CHAPTER 2

Limits and the
Derivative

| do not know what | may appear to the world, but to myself | seem to
have been only a boy playing on the sea-shore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.

SIR ISAAC NEWTON (1642-1727)

Taking mathematics from the beginning of the world to the time of New-
ton, what he has done is much the better half.
GOTTFRIED WILHELM VON LEIBNIZ (1646-1716)
(generally credited with having created calculus independently of Newton)

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! and all was light.
ALEXANDER POPE (1688-1744)

CALCULATOR CALCULUS

Imagine that you are a video game designer and programmer. (This is a

career that requires mathematics—do some research and learn more about

it!) You want to design an environment filled with hidden perils for unwary

players. You decide to give each character the ability to visually zoom in on

any part on this environment—the player will get points if the character

spots, and avoids, a pitfall.

The graph below might represent one small portion of a two-dimensional

environment. (It may also remind you of the “hills” you modeled in Chap-

ter 1!)
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CHAPTER 2 ®m Limits and the Derivative

Suppose a character is “climbing the hill.” Toward what point is she
headed? (Look for the coordinates of the “top of the hill.”)
But, the character is unwise and fails to zoom in on the summit. If she

did, she might spot the tiny gap:

You might imagine what will happen when she reaches the top—the
ground disappears and she plummets! Would you still answer the question
“toward what point is she heading” the same way? After all, she doesn’t
know she is doomed to tumble through a hole. Her steps still lead toward
the point (2, 3).

In calculus we will make a big deal out of the distinction between a
function value (or the absence of one) and the intuitive concept of “headed
toward.” (This concept will be made much more explicit in the chapter.)

Project Idea:
Put some “holes” in the hills you modeled in Chapter 1 (see chapter
opener.) You can do this by replacing your “hill” model, say f(x) =

—x2 + 1, with a rational function

 fohx)
$0 ="

Let h1(x) be any linear function. Try several, making sketches as you go.

Then answer the following questions:

1. How does the location of the hole depend upon 1 (x)?
2. When do the output values of y = f(x) differ from those of y = g(x)?

As you proceed through this chapter, keep this example in mind.
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ALCULUS HAS ITS origin in several related problems. Two of these are the
Cproblem of tangents and the determination of the velocity of a moving object. We
begin this chapter with a discussion of each of these questions (which turn out to
be equivalent). The results lead to one of the fundamental ideas of calculus, that
of the derivative. In order to discuss the derivative, however, we need the concept
of limit, which is intuitively involved in the problems of tangents and velocity.
The careful development of this concept is sometimes regarded as a digression
by students. In fact, however, an understanding of limits is basic to the study of
calculus.

2.1 Two Equivalent Problems

Tangent to a Curve

We know from plane geometry that the tangent to a circle at a given point is the
straight line through the point perpendicular to the radius drawn to the point. See
Figure 1, in which we show the circle x2? + y? = 25 and the tangent at (—3, 4). Since
the slope of the radius is —3, the slope of the tangent is 3 and hence its equation is
y—4=32(x+3),0r3x— 4y + 25 =0.

Things are not so simple when the given curve is not a circle. Sometimes (by
analogy with the circle) it is suggested that a tangent is a “straight line making
contact with the curve at exactly one point,” but you can see from Figure 2 that
such a definition is inadequate. Nevertheless most people have an intuitive idea of
what a tangent is; the problem is to be precise about it.

Y

/ X

Figure2 Tangent making contact with a curve more than once

m Example 1
Discuss the problem of finding the tangent to the curve y = x? at the point (1, 1).

Solution

The graph, together with the tangent at (1,1), is shown in Figure 3. Of course that
begs the question; it is hardly fair to draw it before we know what it is! Nevertheless,

7

X2+ y?=25

Figure1 Tangent to a circle

/

Figure3 Tangenttoy = x?
at (1,1)
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/

Figure4 Approximation to
tangent at (1,1)

we are going to begin by assuming that a definite tangent exists, our plan being to
sneak up on it.

There is no difficulty in drawing a line through (1,1) and a neighboring point
(x,y) on the parabola. (See Figure 4.) This line is not the tangent, but it is a good
substitute if (x,y) is near (1,1). Its slope is

y—1 _x*-1
Q) x—1 x-—-1

where we use the functional notation Q(x) to indicate that the slope is a quotient
whose value depends on x. Note that Q(x) is defined only for values of x # 1, since
(x, ) must be distinct from (1,1) if we are to draw the line shown in Figure 4.

Now imagine the point (x,y) brought closer to the point (1,1). The nearer it
gets, the closer x is to 1. The question is, how does the slope Q(x) behave during
this process? Observe that for all x # 1 we can write

-1 1
Q== D

x+1

and from this it is evident that as x gets closer to 1, the slope approaches 2. While x
cannot be allowed to equal 1 (and hence the slope never equals 2), there is never-
theless no doubt about the number Q(x) is approaching. It is not, for example,
approaching 3, or 2.01, or 1.9997; it is approaching 2. Why not agree that the tan-
gent is the line through (1,1) with slope 2? No other agreement would be sensible,
so we adopt this as the definition of the tangent.

Thus the problem of finding the tangent at (1,1) is solved. The line through
(1,1) with slope 2 is represented by the equationy — 1 =2(x —1)or2x —y — 1 = 0.
In Figure 3 it may appear that we had to guess the direction of the line, but now we
can plot two of its points, say (1,1) and (0,—1), and sketch it accurately. [ |

In Example 1 the reader has a right to object that we began by evading the question of what a
tangent is. We said that we would sneak up on it, but what line did we actually have in
mind? One answer is the line through (1,1) with the same direction as the curve at that point,
but what does “direction” mean? Is it our line of sight as we move along the curve looking
straight ahead? That is simply the tangent!

The difficulty is that we began by talking about a concept that is intuitively clear but lacks
precise definition. We used our intuition to lead us to the definition, but once the definition is
adopted we don’t need intuition. We can appeal to the definition instead and say, “That is the
line we had in mind.” Study Example 1 carefully to appreciate this point. What looks like cir-
cular reasoning is really motivation for a definition. If we were merely trying to be logical,
we would give the definition and be done with it. (Definitions require no introduction or
defense.) We would say, “The tangent to the curve y = x? at the point (1,1) is the line through
(1,1) with slope 2.” But then you might justly accuse us of being arbitrary. In the end we are;
every definition is arbitrary! Mathematicians, however, are no different from other people in
their desire to be understood.
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Note that in the end there is no mystery about direction. When you reach (1,1)
in your travel along the curve, simply look ahead along the line 2x —y — 1 = 0 we
found in Example 1. More precisely, define the slope of the curve (previously an
ambiguous idea) to be the slope of the tangent, namely 2.

m Example 2

The slope of the curve y = x? at (1,1) is 2, as we agreed in Example 1. There is no
reason why we cannot adopt a similar definition at any point of the curve, say
(xy,¥,)- If (x,y) is a neighboring point of the curve, the line through (x,y,) and
(x,y) is an approximation to the tangent. Its slope is

Y=Y x*—x?
X—x, X-—Xx X = X

(x — xp) (x + xp) _

X+ x

Qx) = (x # x,)

0

Closeness of (x,y) to (x,y,) implies closeness of x to x,, which implies that Q(x) is
nearly equal to 2x,. Hence we define the tangent at (x,y,) to be the line through
(x,,y,) with slope 2x .. An equation of the tangent is

Y=y, =2x,(x —x,)

Thus the slope of the curve y = x? at any point (x,y,) is 2x,. To say the
same thing without subscripts, the slope of the curve y = x? at any point (x,y) is
m(x) = 2x. The slope depends on x. At (1,1) it is 2; at (0,0) it is 0; at (2,4) it is 4; and
SO on. L

m Example 3
The graph of

:|x|:{ x if x=0
Y —-x if x<0

consists of two rays meeting at the origin, as shown in Figure 5. Discuss its slope at
the origin.

Solution

There is a “corner” at (0,0), which suggests that we will have difficulty defining a
tangent at that point. To find out what happens, let (x,y) be a neighboring point of
the graph. The slope of the line through (0,0) and (x, y) is

y=0_y_Ixl [ 1 ifx>0
Q(x)_x—o_x_ x _{—1 if x<0

(Note that x cannot be 0. Why?) When (x, y) is close to (0,0), what is Q(x) close to? It
is 1 or —1 depending on whether x > 0 or x < 0. There is no number m we can
name that Q(x) approaches as x approaches 0.

We describe this situation by saying that there is no tangent at (0,0). Nor does
the graph have a slope at that point. A traveler moving from left to right on this
path would be puzzled if you asked about the direction of the path at (0,0). (See

y=—x(x<0 y=xx=0)

Figure5 Graphofy = |x|
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Northeast

N\
A

N\
N\

AN
Southeast

Figure6 What is the

direction at (0,0)?

tangent
atthe —
origin

y=

Figure7 Vertical tangent

at (0,0)

Figure 6.) The traveler might say, “Well, I was going southeast. But this is ridicu-
lous. T had to come to a screeching halt and now apparently I am about to go north-
east. The least they could do is put up some signs.” |

m Example 4

The graph of y = Vx is the upper half of the parabola y? = x (Figure 7). It is geo-
metrically apparent that its tangent at the origin is the y axis, which leads us to
believe that the slope at (0,0) is undefined. We confirm this by looking at

y-0 Vx 1

72@ (X>0)

When x approaches 0, Q(x) increases without bound, which is what we should

Qx) =

T x—-0 x

expect. This means that the line through (0,0) and (x,y) gets steeper as (x,y)
approaches the origin. The line it approaches is the vertical line x = 0. Thus in this
case the curve has a tangent, but its slope is undefined. [ ]

Velocity of Motion in a Line

Now we turn to a question that is closely related to the problem of tangents. Sup-
pose that a ball is thrown straight upward, its height above the ground t seconds
later being h = 64t — 16t (in feet). The source of this formula need not concern us
now; we simply take it as given. What we want to discuss is the velocity of the ball.

Presumably you already know how to compute an average rate, as in the case of
a car making a trip of 150 miles in 3 hours. When we say that its average rate is 50
mph we are using the formula

Rate — Dis‘tance

Time
(sometimes written in the form Distance = Rate X Time). This formula is not much
help in the case of a ball thrown upward from the ground because the rate is not
constant. Moreover, the ball reverses direction at its highest point; our discussion
of velocity should include a way of distinguishing between upward and down-
ward motion.

What we need is a mathematical refinement of the operation of a radar unit,
which measures the instantaneous rate at which an object is moving. The reason it
works so well is that the radar pulse (from the unit to the moving object and back)
travels at the speed of light. Hence the object moves a very short distance in a very
small interval of time while its rate is being measured.

Let’s apply that idea to the ball. When t = ¢, the height of the ballis & j= 64t —
16t 2. If t is a later clock reading (¢ > t ), the height has become h = 64t — 16t2. The
change in position (called “displacement”) is

h—h,= (64t — 161%) — (641, — 16t 2) = 64(t — t,) — 16(t> — £ 2)

The corresponding change in time is t — t; we define the average velocity during
the time interval [t , ] to be



SecTiON 2.1 ® Two Equivalent Problems 63

h — hyg
t—t,

64(t — ty) — 16(+ — t)
t—t,

=64 —16(t + t,)

This is the same idea as our computation of average rate in the case of a car going
150 miles in 3 hours, but since it allows for negative (or zero) displacement we call
it velocity. (Speed is the absolute value of velocity.)

If the ball is rising during the time interval [t ,t], displacement is the same as distance trav-
eled, and the average velocity is positive. In general, however, it may be positive, negative, or
even zero. If t; = 1.9, for example, and t = 2.1, then 11, = 63.84 and I = 63.84, so the average
velocity is
h—h 0
- 0_* _p
t—t, 02
This does not mean that the ball is motionless; instead it rises from /1, = 63.84 to its highest

point and then falls back to h = 63.84.

It is also worth noting that there is no mathematical reason to restrict t > t. If we allow t <t,

the time interval is [t,,] instead of [£,, ] and the average velocity is

(terminal position) — (initial position) hy —h _h — h
th—t t—t

(later time) — (earlier time)

The ratio is the same either way.

The next step should be apparent. To make the average velocity a good
approximation to the instantaneous velocity at time t,, we choose f close to ¢, (as is
done in a radar unit). More precisely, we evaluate the limit of average velocity as ¢
approaches t. As you can see from our formula for average velocity, the limit is

v, =64 — 16(t, 4 t,) = 64 — 32t,

Dropping the subscript (the only purpose of which was to distinguish the fixed
instant ¢, from the variable time t), we have a formula for instantaneous velocity v
at time f, namely

v=64—32t =322 —t)
This formula is a precise instrument for discussing the motion of the ball, for it

tells us not only how fast the ball is moving at any time f, but also in what direction.
The following table of heights and velocities illustrates what we mean.

t 0 1 2 3 4
h 0 48 64 48 0
v 64 32 0 —32 | —64

When t = 0 the ball is leaving the ground (h = 0) with speed 64 ft/sec, moving
upward. One second later it has reached a height of 48 ft and is still moving
upward with speed 32 ft/sec. At t = 2 it has reached its highest point (64 ft) and
has come to a momentary stop. When t = 3 the ball is back to height & = 48 and is

In using the term “limit” here,
we are leaning on your intu-
ition. The term will be care-
fully defined in the next
section.

GRAPHING CALCULATOR CONCEPTS
Tables

You can reproduce the time-height-
velocity table given in the text using
your calculator’s fable feature.
Simply set the height formula y, =
64x — 16x2 and the velocity formula
¥, = 64 — 32x(note that you must
replace the more intuitively named
variables £, h, and vwith xand y.)
Now, being sure to set the table prop-
erties to allow you to select your own
values for the input variables, look at
the table and choose the x values 0,
1,2, 3, and 4. You can go between
these values to refine the table.
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70+

50—+

30+

10

0 1 2 3

Figure8 Graph of
h=64t—16t20=t=4

falling with speed 32 ft/sec (because the velocity is negative). It strikes the ground
when t = 4 with speed 64 ft/sec (the same speed with which it was thrown, but the
motion is opposite in direction).

A graph of h as a function of t is shown in Figure 8 (not to be confused with the
path of the ball, which is in a vertical straight line). The formula v = 64 — 32t is
nothing more than the slope of this graph, as we can check by the methods
described in the first part of this section. For if (¢ 1) is an arbitrary point of the
graph and (t,h) is a nearby point, the slope of the line joining them is

h— hy
t_

Q) = = 64— 16(t + )
0

(the average velocity computed earlier). Its limit as t approaches £, is the slope of
the graph at (¢, 11,), namely m(t,) = 64 — 32t . The slope at any point (t,) is there-
fore m(t) = 64 — 32t, which is the formula for velocity at time t.

m Example5

Suppose that an object is moving along a coordinate line (the s axis) in such a way
that its position at time ¢ is s = p(t) = t2 Find a formula for velocity.

Solution

Let t, be the instant at which we are going to compute velocity and suppose that
t # t,. The average velocity during the time interval with endpoints ¢, and t is

change in position  p(t) — p(t,)

Q) =

change in time t—t,

:tz—tOZ _ (=) (E+ ty)
t—t, t—t,

=t+t,

When t approaches ¢, Q(t) approaches 2t , so the velocity at ¢, is v(t,) = 2t,. The
same statement without subscripts is that the velocity at time tis v (t) = 2t. [ |

This derivation of v(t) = 2t from the law of motion s = t? is mathematically
indistinguishable from Example 2, where we derived the slope m(x) = 2x from the
equation y = x% We may use that fact to interpret the meaning of positive and neg-
ative velocity. When t = —1, for example, the velocity is v = —2. The negative
clock reading is no problem; it is like the year 1 B.C. (simply an earlier time than the
one we choose to call 0). But what are we to make of negative velocity?

Recall from Section 1.2 that negative slope (of a straight line) means that the
line is falling from left to right. If the equation of the line is y = mx + b, this implies
that y is decreasing as x increases. It is geometrically apparent (somewhat harder
to prove!) that negative slope of a curve means the same thing. Thus the parabola
y = x? is falling from left to right as we pass through the point (—1,1) because
the slope is negative (m = —2 atx = —1). (See Figure 9.) The same statement about
the law of motion s = #2 is that s is decreasing as the clock ticks off t = — 1 because
the velocity is negative (v = —2 at t = —1). Since s is the coordinate of an object
moving along the s axis, the object must be going in the negative direction of that
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axis. Similarly, positive velocity means that the object is moving in the positive

direction of the s axis.

y
— 2
(1,1 re
falling rising
(negative slope) (positive slope)

Figure 9 Interpretation of slope

We may summarize as follows:

Suppose that an object is moving along a coordinate line with velocity vat time £. Its speed
is the absolute value of v. Its direction is positive if v> 0 and negative if v < 0. (If v= 0,

it has come to a momentary stop.)

When we get to the subject of motion in a curve, you should remember what

we have said about velocity here. Its two qualities of speed and direction (which in

linear motion require nothing more than a number with a sign) will be described

by using vectors. The purpose of this section, however, is merely to exhibit the

equivalence of the problem of tangents and the problem of velocity, in preparation

for the definition of derivative in Section 2.4.

Problem Set 2.1

1. Let Q(x) be the slope of the line through (2,4) and a
neighboring point (x,y) of the parabolay = x2.
(a) What is the formula defining Q? For what values
of x is Q(x) defined?
(b) What number does Q(x) approach as (x, y)
approaches (2,4)?
(c) Find an equation of the tangent at (2,4).

2. Let Q(x) be the slope of the line through (1,—1) and a
neighboring point (x, y) of the parabola y = —x2
(a) What is the formula defining Q? For what values
of x is Q(x) defined?
(b) What number does Q(x) approach as (x, y)
approaches (1, —1)?
(c) Find an equation of the tangent at (1, —1).

In each of the following, find the slope of the graph at the
given point and an equation of the tangent at that point.

3. y=3x%at(2,12)

4. y=1-x2at(0,1) How could the result have been
predicted graphically?

5 y= %xz at (0,0) How could the result have been
predicted graphically?

6. y=x%at(1,1) Hint:a®—b%>= (a — b)a® + ab + b?)
7. y=Vxat(1,1) Hint:x —1=(Vx —1)(Vx +1)

8. y=ux]|x|at(0,0) How could the result have been
predicted graphically?
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In each of the following, s is the position of a moving object
at time . Find the velocity at the given instant.

9. s=t2+1atl 10. s=t2—1atl

11. s=+—4at2 12. s=1t3at2

13. s=1/tat2 14. s = Vtat4

15. If (x,, ¥, ) is a point of the curve y = 3x?, let Q(x) be the
slope of the line through (x,y,) and a neighboring
point (x,y) of the curve.

(a) What is the formula defining Q? For what values
of x is Q(x) defined?

(b) Find the slope of the curve at (x,1,) by determin-
ing what Q(x) approaches as (x,y) approaches
(X0 Yo)-

(c) Drop the subscripts in the answer to part (b) to
obtain the slope at any point (x,y). Does the result
check with Problem 3 when x = 2?

In each of the following, find the slope of the graph at
(x oY, )- Then drop the subscripts to obtain the slope at any
point (x, ).

16. y=1—x? (Compare with Problem 4.)
17. y =3x> (Compare with Problem 5.)
18. y =x3 (Compare with Problem 6.)

19. y= Vx For what values of x is the slope at (x, )
defined?

In each of the following, a law of motion is given. Find the
velocity at time ¢, then drop the subscript to obtain the
velocity at time t. (The result should check with the corre-
sponding special case in Problems 9 through 14.)

20. s=12+1 21 s=12—1
22, s=1t3—4 23, 5= 3t3
24. s=1/t 25. s =\t

In each of the following, use formulas derived in Problems
15 through 19 to determine where the graph is rising (posi-
tive slope), where it is falling (negative slope), and where
it flattens out (zero slope). Sketch the graph using this

information.
26. y=3x2 27. y=1—x?
28. y =5x2 29. y=x°

30. y=Vx

In each of the following, use formulas derived in Problems
20 through 25 to determine when the object is moving in the
positive direction, when it is moving in the negative direc-
tion, and when it comes to a momentary stop.

3l. s=t2+1 32. s=+t2-1

33. s=13—4 34. s =3t

35. s=1/t (Assume thatt>0.)
36. s= V't

37. An object dropped near the surface of the earth (and
encountering no air resistance) falls a distance s = 3¢t2
in t seconds (where g is a constant). Show that the
velocity of the object ¢ seconds after it is dropped is
o(t) = gt.

38. Astone is thrown straight upward. After  seconds its
height above the ground (in feet) is s = 32t — 16¢2.

(a) Show that the velocity of the stone at time t is
v(t) = 32 — 32t. What is its initial velocity?

(b) When does the stone reach its highest point and
how high does it rise?

(c) When does the stone return to the ground and
what is its velocity when it hits the ground? What
is its speed at that instant?

39. Aballis thrown straight upward from the top of a
building. After f seconds its height above the ground
(in feet) is s = 96 + 16t — 16t2.

(a) How tall is the building?

(b) Show that the velocity of the ball at time # is
v(t) = 16 — 32t. What is its initial velocity?

(c) When does the ball reach its highest point and how
high (above the ground) does it rise?

(d) Assuming that the ball returns to the roof of the
building, find when it lands. What is its velocity at
that instant? its speed?

(e) The ball could have been thrown by a person
whose arm was extended beyond the edge of the
roof. In that case it would land on the ground.
When would it land and with what velocity? with
what speed?

40. Show that the slope of the graph of y = x* — 3x at (x,y)
is m(x) = 3x2 — 3. Then confirm that there are turning
points at x = *1 (See Problem 19, Section 1.5.)

41. Show that the slope of the graph of y = x + (1/x) at
(x,y)ism(x) =1 — (1/x?). Use the result to confirm
that there are turning points at x = =1. (See Problem
27, Section 1.5.)
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42.

43.

44.

45.

46.

47.

48.

Explain why the tangent to the curve y = x'/® at the
origin is vertical. Sketch the graph. Hint: The curve is
symmetric about the origin. (Why?)

Explain why the graph of y = 1 — x2/? has a vertical
tangent at (0,1). Sketch the graph. Hint: The curve is
symmetric about the y axis and (0, 1) is its highest
point. (Why?)

Show that if x, > 0, the slope of the curve y = x3/2 at
(xy,y,)is 3V/x,. Hint: To simplify the formula for slope
of the line through (x,y,) and (v, y), leta = xol/2 and b
= x1/2, The formula becomes

Q) = % —a3)/(b?—a?)

From Problem 44 we may conclude that the slope of
the graph of y = x%/2 at (x,y) is m(x) = %\/a; (x >0).
Why does this formula also apply when x = 0? Sketch
the graph of y = x3/2 by noting where it rises, falls, and
flattens out.

Show that if the law of motion of a moving object is
quadratic (s = at? + bt + ¢), the velocity is linear,
o(t) = 2at + .

In Problem 46, let ¢, and ¢, be endpoints of a time inter-
val and let f be its midpoint. Show that the velocity at
time ¢ is the average of the velocities at t, and ¢,.

In Problem 47, show that the velocity at the midpoint is
also the average velocity during the interval. (Thus in a
law of motion s = at? + bt + ¢, the “average velocity” as
defined in the text can be computed by averaging the
instantaneous velocities at the endpoints of the interval.)

2.2 Limits

In Section 2.1 (Example 1) we agreed to find the slope of the curve y = x2at (1,1) by

examining the quotient

y—1 -1 (x—1)(x+1)
Q(x)_x—l_x—l_ x—1
=x+1 (x#1)

49. Give an example of a law of motion for which neither

of the statements in Problems 47 and 48 is true.

. Suppose that the periodic motion of an object bobbing

up and down at the end of a spring is represented by
s =sint.
(a) Where is the object when t = 0, /2, m, 371/2, 2?

(b) Show that the average velocity during the time
interval with endpoints t and t + & (h # 0) is

cosh —1 sinh
int|———| +cost W

h
Hint: Use the addition formula

sin (u + v) = sin 1 cos v + cos u sin v
from trigonometry.

(c) It can be shown that as i approaches 0 the expres-
sions (cos i — 1)/h and (sin h)/h approach 0 and 1,
respectively. Use that fact to find the velocity at
time t.

(d) How fast, and in what direction, is the object going
whent =0, /2, ™ 31/2, 2m?

. What do you think the graph of f(x) = V1 — x**looks

like? How does it compare to g(x) = V1 + x*3? Use
your graphing calculator to examine these graphs; set
the viewing window to -2 =x =2, -2 =y = 2. Use
the drawing feature to draw several tangents. Explain
how the curves rise and fall. What seems to be happen-
ing to the slope of f(x) as x approaches 1 (x < 1)?

We said that Q(x), while undefined at x = 1, approaches 2 as x approaches 1, and

we adopted the number m = 2 as the answer to the question.

The statement “Q(x) approaches 2 as x approaches 1” may be interpreted geo-

metrically by looking at the graph of Q. Since Q(1) is undefined, while Q(x) = x + 1

for all x # 1, the graph is a straight line with a hole in it. (See Figure 1.) The coordi-

nates of the hole are (1,2), so the y coordinate of a bug traveling on the graph gets
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y=x+1x#1)

(1.2

/|

/ 0 X

Figure1 Graph of
-1
QW =
x—1

GRAPHING CALCULATOR CONCEPTS

Graphing “Holes”

Can you find the “gap” (the hole) in
the function in Figure 1, using your
graphing calculator? Your calculator
draws a graph by plotting many
points. It doesn’t “know” that there
isahole at (1,2), but it does leave
a gap in the line at that point. You
will be able to see it if you reset the
viewing window to 0 = x = 2,
1=y=3.
Try to find the hole in the graph of
X2 — 4
Cox—4
Write two compound inequalities to
describe the viewing window you
used.

closer to 2 as its x coordinate approaches 1. We express this in somewhat different
language by saying that “the limit of Q(x) as x approaches 1 is 2” or (in symbolic
form)

lim Q(x) = 2

x—1

This statement cannot be interpreted as an evaluation of Q(x) at x = 1. While it
is true that Q(x) = x + 1, and this formula yields 2 when x is replaced by 1, it is
nevertheless meaningless to say that Q(1) = 2. Q(x) is the slope of the line through
(1,1) and (x,y), which is not defined unless (x,y) and (1,1) are distinct. Thus the

statement
lim Q(x) = 2
x—1

does not refer to what happens at x = 1 but to the behavior of Q(x) when x is near 1.
Perhaps this is clear enough, at least on intuitive grounds. However, there are
difficulties.

m Example 1(a)

We have argued that if
=1
QM) ="—7
then
lim Q(x) = 2
x—1

our reasoning being that when x is close to 1, Q(x) = x + 11is close to 2. But suppose
a critic suggests that

lim Q(x) = 2.001
x—1

arguing that when x is close to 1, Q(x) is near 2.001. On what grounds do we say
that the critic is wrong?

While this may seem to be a perverse question, it is a difficulty we must meet
and overcome. No mathematical concept is useful if it is so imprecise as to allow
two people to come up with different answers. Perhaps we do not think of 2 and
2.001 as very far apart, but they are nevertheless distinct. We cannot afford to dis-
agree at all; the limit is either 2 or it isn’t, and we must settle on some definitive
way to reach a decision.

Mathematicians struggled for a long time to develop the definition we are
going to give, but it is simple enough as it applies to this example. The idea is that
if 2 is the answer, we should be able to force Q(x) as close to 2 as our critic desires.
(Closer, for example, than 2.001, if required.) So we let our critic define “close.”
And we remember that Q(x) depends on x; we control its behavior by placing
restrictions on x.

It is like a contest. Our critic goes first, naming a neighborhood of 2 in which
Q(x) is to lie. We go second, responding to the challenge by naming a neighbor-
hood of 1 in which x should lie in order to keep Q(x) where our critic wants it. If we
can respond to every challenge, our critic must agree that the answer is 2. If there is
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even one neighborhood of 2 to which we are unable to confine Q(x) by keeping x close to 1,
however, we must admit that the answer is not 2.

To understand the definition we draw from this process, it is important to real-
ize that a neighborhood of a point p is an open interval containing p. (See Figure 2.)
If p is deleted, the neighborhood is said to be punctured. Occasionally we will also
refer to a right neighborhood of p and a left neighborhood of p, which are open
intervals of the type (p,b) and (a, p), respectively.

Our definition says that

lim Q(x) =2
x—>1
provided that the following condition is met:

Given any neighborhood of 2 (say N), there is a punctured neighborhood
of 1 (say M) with the property that x € M = Q(x) € N.

The reason we puncture the neighborhood of 1 is that the domain of Q excludes 1.
The implication

XEM=Qkx)EN

would fail if we allowed x = 1. [ |

m Example 1(b)

Suppose that our critic wants Q(x) to lie in the interval N = (1.98,2.05), that is
1.98 < Q(x) < 2.05. To discover how we should restrict x in response to this chal-

lenge, we solve the inequalities

x> =1
< 2.05
1

1.98 <
x —

thatis, 1.98 <x + 1 <2.05 (x # 1). Subtracting 1 from each side, we find

098 <x <105 (x#1)

which means that we may choose M to be the interval (0.98,1.05) with 1 deleted.
Since

XEM =098 <x<1.05 (x#1)
=2198<x+1<205 (x#1)
= Q) EN
our critic should be satisfied. [ |

m Example 1(c)

We must convince ourselves that our critic cannot baffle us by any challenge.
Instead of N = (1.98,2.05) suppose that an arbitrary neighborhood of 2 is named. It
ought to be apparent that we can assume this neighborhood is symmetric about 2,
simply by using the closer endpoint to compute the radius. For example, there
should be no complaint if we replace (1.98,2.05) by (1.98,2.02), which has midpoint
2 and radius 0.02. (See Figure 3.) If we can keep Q(x) in the second of these, we are
automatically keeping it in the first, and that is what our critic demands.

neighborhood of p

a p b

punctured neighborhood of p

a p b
right neighborhood of p
p b
left neighborhood of p
—o0
a P

Figure2 Neighborhoods of
a point

2.05 ¢

2.02

1.98

Figure3 Replacing an
arbitrary neighborhood by a
symmetric neighborhood
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Hence let us assume that the challenge is of the form
N=2—-¢2+¢)

where ¢ is any positive number (the radius of N). Our problem is to name a punc-
tured neighborhood of 1 (say M) such that

xEM=Qkx)EN

As in Example 1(b) it is just a matter of solving the appropriate inequalities. Our
critic is asking us to satisfy

2—e<Qx)<2+c¢

SO we write
X -1

x—1

2—¢ < <2+ee2—c<x+1<2+4+¢ (x#]

el-e<x<l+e (x#1)

Our response should now be clear. We choose M to be the neighborhood
(1 — &1 + ¢) with 1 deleted. Then (following the above implications backward)
we have

xEM=Qkx)EN

which is what our critic must believe to be satisfied.

A graph helps clarify the procedure in Example 1(c). See Figure 4, in which we
show M and N on the x and y axes, respectively. Our critic names a symmetric
neighborhood of 2 with radius ¢ > 0. We respond by naming a (punctured) neigh-
borhood of 1. The arrows indicate that the function Q sends the points of M into N,
which is what our critic demands.

Note that our choice of M is not unique. If we were to take M to be the neigh-
borhood (1 — ¢/2,1 + ¢/2) with 1 deleted, the implication

xEM=Qkx)EN

would still be correct. The punctured neighborhood shown in Figure 4 is the largest

(and simplest) we can select, but any smaller neighborhood serves as well.
X2 =1

y — [
y=Qx) 1 X+ 1(x#1)

Figure4 Sending M into N |
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m Example 1(d)

In Example 1(a) we asked how we could argue with a critic who suggests that

Iim Q(x) = 2.001

x—1

Now we are in a position to say that the critic is definitely wrong. We know from
Example 1(c) that Q(x) can be made arbitrarily close to 2 by taking x sufficiently
close to 1. In particular we can box Q(x) away from 2.001 by forcing it into the
neighborhood N = (1.9995, 2.0005). (See Figure 5.) In other words the statement

lim Q(x) = 2.001
x—1

is false. By a similar argument we can show that if L is any number except 2, the
statement

lim Q(x) =L

is false, for we can box Q(x) away from L by keeping x close to 1.

y
not the correct limit
2.001 --/
/ y=0aK)
2.00050-—————————
_—N

correct limit —__ ol < —(1.2)

1.9995 QO—————

|
I
|
|
|
|
Figure5 Boxing Q(x) away from 2.001 | |

m Example 2

Sometimes the neighborhoods involved in evaluating a limit are one-sided. Con-
sider, for example, the statement
lin‘11 Vx—-1=0

The graph of f(x) = Vx — 1 is shown in Figure 6; it is the upper half of the
parabola y? = x — 1. (Why?) A critic who doubts that the limit of f(x) asx — 11is 0
would challenge us to confine f(x) to a neighborhood of 0, say N = (—¢, ¢), where
€ > 0. Since the domain of fis {x: x = 1}, we cannot work with an ordinary neigh-
borhood of 1 in response. Values of x to the left of 1 cannot be used at all. What we
do instead is name a right neighborhood of 1, as shown in Figure 6. To figure out
what M should be, we follow the horizontal line from ¢ on the y axis until we hit
the graph and then proceed down to the x axis. The point we hit is the right-hand
endpoint of M, say b. To find b, we observe that it must satisfy f(b) = ¢, thatis,

J /
y=vx—1
£ Q————————
I'M
N
0 1 T+ e? X
—&

Figure6 lim Vx —1=0
x—1
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Vb—1=c¢=>b—-1=¢2

=>b=1+¢?

Hence M is the open interval (1,1 + ¢2). To confirm that it works (without depend-
ing on the picture), we write

XEM=1<x<1+e¢e2
S0<x—1<e?

=20<Vx-1<e¢ (Order Property 8, Section 1.1)
= f(x) EN [ |

These examples should help explain the following definition of limit.

Limit of a Real Function
Let fbe a real function with domain D and suppose that ais a real number having a
punctured neighborhood in D. (This insures that all points near a, with the possible excep-
tion of a itself, are points of D. In other words, f(x) is defined for all x near a, but f(a) may
be undefined.) The statement

lim f(x) =L

X—a
where L is a real number is defined to mean the following:
Given any neighborhood of L (say N), there is a punctured neighborhood of a (say

M) suchthatx& M = f(x) € N.

If a has only a right [left] neighborhood in D, we replace “punctured neighborhood” by “right
[left] neighborhood.”

m Example 3
y Prove that lim x2 = 4.
x—2
y=x .
4+ e Qrm—mm——m Solution
. — | We start by assuming that a critic has named a neighborhood of 4, say
|
R S i N=@4—-¢4+¢) wheree>0
|
I Our problem is to name a neighborhood of 2 (say M) such that
|
|
| YEM=x*EN
|
M
I (No need to puncture it this time. Why?) From the points 4 — ¢ and 4 + ¢ on the y
0 <« axis (Figure 7), follow horizontal lines to the graph of y = x? (x = 0), then vertical
Va-e Vate lines to the x axis. The corresponding points on the x axis are V4 — ¢ and

Figure7 Naming M when N V4 + g respectively. (Why?) They serve as endpoints of M. It is geometrically
is given apparent that x € M = x? € N; if our critic wants algebraic confirmation, we write
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XEM=V4—-—e<x<V4+e¢
=>4 -e<x?<4+e¢
=x?EN n
Many calculus books give a definition of limit that does not mention neighbor-

hoods. To see how this is done, assume that the neighborhood N is symmetric
about L with radius ¢ > 0. Then

f@)ENL—-e<f(x)<L+e¢
o -—e<flx)-L<e
e |fx)-Ll<e

Similarly, assume that M is symmetric about 2 with radius 6 > 0. Then

XEMoa—0<x<a+0 (x # a)
e -0<x—a<b (x #a)
s0<|x—al <6

The statementxli_n)waf(x) = L is therefore equivalent to the following:

Given € > 0, there isa 6 > 0 such that
0< |x—al<dé6=|fx)—L|<e

If a has only a right neighborhood in the domain of 7, we replace
0< |x—al<dé by 0<x—a<s

(to keep x > a). If there is only a left neighborhood of a in the domain, we replace
0<|x—al<o6 by 0<a—x<5o

(to keep x < a).

To see how this “¢-6 definition” works in practice, refer to our earlier exam-
ples. If ¢ > 0 is named in Example 1(c), where we proved that

21
lim——— =2
-1 x — 1
the corresponding 6 > 0is 6 = ¢. That s,
x?—1

0<|x—1l<e=

—2‘<e

In Example 2, lim Vx —1 =0, we name 6 = ¢2 (and use a right neighborhood).
That s,

0<x—-1<e?= |\/x—l—0|<.s

In Example 3, on the other hand, the ¢-6 definition is not as convenient. The
neighborhood M = (V4 — ¢, V4 + ¢) is not symmetric about the point 2. To name
6 > 0 such that

[x =2 <6= |x2—4| <e¢
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we would have to figure out which of the endpoints V4 — g and V4 + ¢ is closer
to 2 and cut down M to a symmetric neighborhood with the smaller distance as
radius. There is not much point in taking the trouble! This illustrates the fact that
we may choose between the ¢-0 definition and the neighborhood definition as the
situation demands.

m Example 4

To prove that lim (x — 2) = 4, we suppose that a critic has named ¢ > 0. Our prob-
x>

lem is to name 6 > 0 such that

[x —2] <6 =|Bx—2)—4|<e

(Note that we do not insist on 0 < |x — 2| in this case because it is unnecessary to
keep x # 2.) Since

|Bx—2)—4|<ee [3x—2)| <e¢

E
_2 < —
e [(x—2)] 3

we name 6 = ¢/3. Then (following the implications backward) we have

|x—2|<6=>|x—2|<§:>|3(x—2)|<€$|(3x—2)—4|<£ [ |

m Example5

To show that lim (1/x) = 5, we suppose as usual that we are confronting a skeptic,
X—.
who gives us a neighborhood of 3 with radius ¢ > 0. Our problem is to force 1/x to

lie in this neighborhood by restricting x to be near 2.

The easiest procedure is to look at the graph (Figure 8). Here we have shown
the challenger’s neighborhood (cut down, if necessary, to exclude 0) as an interval
on the y axis with  as midpoint. To keep y = 1/x in this neighborhood, we restrict
x to the neighborhood of 2 shown on the x axis. This neighborhood is not symmet-
ric about 2, but our first definition of limit does not require it to be.

=

=

1 1
Figure 8 ;—>§ asx—2 |
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Now we look at some limits that fail to exist.

m Example 6

Letf(x) = |x|/x and consider

lim f(x)

x—0

As you can see from Figure 9, this limit does not exist since f(x) is 1 or —1 depend-
ing on whether x > 0 or x < 0. To convince a skeptic by appealing to the definition,
we would assume the contrary, namely

lirr(;f(x) =L

where L is a real number. No matter what L is, there is no way to confine f(x) to a
small neighborhood of L by keeping x close to 0 (because every neighborhood of 0
contains both positive and negative values of x, the corresponding values of f
being 1 and —1). [ |

In Example 6 we may confine x to a right neighborhood of 0 and evaluate
lim f(x)=1
x—0"

The notation x—0* means that x approaches 0 through positive values; such a
limit is called a right-handed limit. Similarly, the left-handed limit in this exam-
pleis

lir(r; flx)=-1
where x— 0~ means that x approaches 0 through negative values. One way of
deciding that

lim f(x) does not exist
x—0

is to compute the one-sided limits and observe that they are different. (It can be
proved that when the domain permits approach from both sides, the ordinary
limit exists if and only if the one-sided limits are equal.)

In view of these remarks, you may want to go back to Example 2, where we

Iim Vx—-1=0

x—1

evaluated

by confining x to a right neighborhood of 1. Is this an ordinary limit or a right-
handed limit? Our answer is that it is both! The domain of f(x) = Vx — 1 does not
permit x to be less than 1, so it is a matter of indifference whether we write

Iim Vx—-1 or Ilim Vx-1

x—1 x—1*

In Example 6, on the other hand, the domain allows x -0, x >0, or x>0, and
hence it is necessary to distinguish between them.

f(x) =1
01 (x)=1(x>0)

flx) = =1(x<0) 0,—1)

Figure9 What does %

approach when x —0?



76 CHAPTER 2 ®m Limits and the Derivative

Y

Figure 10 Infinite jump at the
origin

Figure 12 Graph of
1

= x sin —
Y X

m Example7

The failure of the limit to exist in Example 6 is due to a finite jump in the graph.
However, there are several ways a limit may fail to exist. Consider

lim /() where f(x %

(See Figure 10.) It is clear from the picture that if M is any (punctured) neigh-
borhood of 0, the statement x € M does not imply any statement of the type
| f(x) — L| < e. The most we can say is that f(x) is unbounded when x— 0 (increas-
ing or decreasing depending on whether x — 0% or x — 07). There is no number L
such that f(x) is near L for all x € M. [ ]

m Example 8

Another way a limit may fail to exist is by oscillation. The graph of f(x) = sin (1/x)
is shown in Figure 11. On any given piece of this curve there is no problem in
describing the action; we are on a kind of sine wave betweeny = 1 and y = —1.
However, there is a compression of the wave near the y axis, an increase in fre-
quency that is boundless as x — 0.

AV A —

1
Figure 11 Graph of y = sin <
Between any two points of the curve on opposite sides of the y axis there are infi-

nitely many vibrations, a situation that is hard to visualize and impossible to draw.
We conclude that

o1 .
lim sin — does not exist. [ |
x—0

m Example9

The difficulty in Example 8 may be removed by “damping” the sine wave. Let
f(x) = x sin (I/x), the damping factor being x. This has the same frequency of vibra-
tion as the function y = sin (1/x), so we are not curing the infinity of oscillations.
But now the graph lies between the lines y = x and y = —x, as shown in Figure 12.
To see why, observe first that

1
—1=sin—-=1

» forallx #0 (Why?)

Now multiply each side by x (preserving the inequalities if x > 0 and reversing
them if x < 0). This yields
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—x=f(x)=x ifx>0
—x=f(x)=x ifx<0

Hence, in any case, f(x) is between x and —x. It follows that

lim f(x)=0
x—0
because f(x) is boxed in between two functions (y = x and y = —x) whose com-
mon limit as x — 0 is 0. (This example illustrates the Squeeze Play Theorem, which
will be stated in the next section.) [ |
Problem Set 2.2 Each of the following limits is of the form lim f(x) = L. Asin

x—a

Problems 1 through 4, verify the limit by assuming as given
aneighborhood of L of the form N = (L — ¢, L + ¢) and then
naming a neighborhood of 2 (say M) such that
x € M = f(x) € N. Puncture M when necessary.

4x> — 9

1. To verify that &1&1} (Bx + 1) = 7, assume that a
critic has named a neighborhood of 7 of the form
N = (7—¢&,7 + ¢), where ¢ > 0. Name a neighborhood
of 2 (say M) such thatx € M = 3x + 1 € N. Why is it

unnecessary to puncture M? 5. {(lir; (2x+4)=10 6. xlilg}z 7 —3
2. To verify that IXIE)I; (6x — 13) = 5, assume that a 7 lim 9x% — 16 -3 8 lim Va =2
critic has named a neighborhood of 5 of the form w43 3 — 4 ¥4
N=(5—¢,5+ ¢), where ¢ > 0. Name a neighborhood 9 lim Vx =1 10, im V1 —x =1
of 3 (say M) such that x € M = 6x — 13 € N. Why is it =l =0
unnecessary to puncture M? 11. limx2=9 12. limx2 =16
x—3 x—4
3. To verify that
2 -9 13. im (4 —x?)=3
lim =6 x—1
-3 X —3
let N = (6 — ¢, 6 + ¢) be a given neighborhood of 6. 14. lim (x2 + 6x) =7 Hint: Complete the square in
x—=1
Name a punctured neighborhood of 3 (say M) such - x2 + 6x.
that
2 —9 15. lim (x2 —2x) =0 16. im (x2 —4x +3)=0
xEM=>x_3EN x=2 x—1
1 6
17. lim — =1 18. lim — =3
Why must M be punctured? m am
4. To verify that
2 — 25 19. lim Vx =5=0 (M must be a right neighbor-
lim =10 . hood of 5.)
x5 X — 5
. AN/1 _ 2 _ .
let N = (10 — &,10 + €) be a given neighborhood of 10. 20. th? I=x"=0 (]\f/Ilmust be a left neighborhood
Name a punctured neighborhood of 5 (say M) such that of 1.
2 — 25 21. lim Vx*—4=0 (M must be a right neighbor-
rYeEM= x—5 EN . hood of 2.)
Why must Mbe punctured? 22. To verify that lim 3x =3, let & > 0 be given. Name

6 > 0 such that

[x—1| <6 = |3x—3| <e¢
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3+x)2-9 3-8
23. To verify that 43, lim O =9 44, lim ™
x—0 X =2 X — 2
x2— 4
lim =4 x —4 %2
=2 X =2 45. lim 46. lim
x—4 \/_; -2 =2 X — 2
let € > 0 be given. Name 6 > 0 such that
-4 47. lim V1 — x 48. lim tan x
0<|x_2|<6:> 2_4 <€ x—>2 x—0
: . 2 : 49. lim x© 50. lim m
24. To verify that l}g{} (1 —x2)=1,lete > 0be given. - S
Name 6 > Osuch that |x| <6 = |1 —x2)—1]| <e. |x — 2|
51. lim ———
25. To verify that lin(} sinx = 0, let € > 0 be given. Name 6 520 X =2
> (O such that |x| <6 = |sinx]| < ¢. 52. Isit correct to say that
Hint: Use the contraction property of sine lim Vx = 1.414?
x—2
(Problem 49, Section 1.6). Explain.
26. To verify that lir? 1+ V4—-x*)=11ete>0be 53. Explain why
given. Name 6 > 0 such that lim x2 # 3.99
x—2

0<2—-x<6=|01+V4--1|<e

Why do we write 0 <2 — x < § instead of
0< |x—2|<6?

In each of the following, evaluate the given limit, then use

an appropriate definition to prove that you are correct.

27.

29.

31.

33.

35.

37.

39.

40.

41.

42.

2 _
T 28. lim x3
-1 x + 1 x—2
lim (x3 + 8) 30. lim (1 — x?)
x—1 x—0
1+x)2-1
lim (x2 — 4) 3. lim 1 F¥° 1
x—0 x—0 X
lim (1 — V) 34. im (Vx — 1+2)
x—0 x—2
lim V9 — «? 36. lim V1 — x2
x—3 x—1
lim — 38. lim
=1 X =2 X =
lim
=1 X — 2

lim cos x Hint: Use the fact that |cost — 1| = |t] for
x—0
- all t (Problem 49, Section 1.6).

. 1
lim x2 sin —
x—0 X

Show that if f(x) = ¢ is a constant function, then

lim f(x)=c¢

x—a

In each of the following, evaluate the limit (or decide that it

does not exist). You need not prove that your answer is cor-

rect.

54.

55.

56.

57.

by naming a neighborhood of 3.99 to which f(x) = x2
cannot be confined by keeping x near 2.

Suppose that
lim f(x)=L>0

Explain why there is a punctured neighborhood of a
(say M) such that f(x) > 0 for all x € M.

Note: Problem 54 shows that a function with a positive
limit must have positive values for all x near the point
of approach. The same statement is true with “posi-
tive” replaced by “negative.” (Why?)

Suppose that the domain of f(x) permits x to approach

a from either side.

(a) Show that if one-sided limits lim f(x) and lim f(x)
exist and have a common value L, then '

lim f(x)=L

(b) Conversely, if lim f(x) = L, why are the one-sided
limits both eqﬁal toL?

In view of the results of Problem 55, what can you say

about

|x — 2| )

lim
=2 X — 2

If fis defined by the rule

xwhenx <1
foo) = { 2 —xwhenx>1

find lirﬂ f(x)and lirg fx).

What can you say about lim f(x)?
x—1
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2.3 Properties of Limits

The last section (a discussion of the formal definition of limit) is not essential
for the evaluation of most limits encountered in the early parts of calculus. It is
unnecessary to be technical when the value of a limit is apparent. Moreover, a
difficult limit may often be simplified by an appropriate application of the proper-
ties of limits. Suppose, for example, that you feel like balking at the statement
1{1{)1(} tan x = 0. Of course it is clear from the graph of tangent (Figure 7, Section 1.6)
that the answer is 0, but it is not trivial to prove it. One way to avoid a confronta-

tion with the formal definition of the last section is to observe that we have proved

limsinx =0 and limcosx =1
x—0 x—0

(See Problems 25 and 40 in the last section.) It seems reasonable to conclude that

sin x 0
tanx = —>-=0 asx—0
COS X 1

or (more formally)

sinx limsinx 0 _0
cosx limcosx 1

lim tan x = lim

(We suppress x— 0 in each limit to simplify the notation.) From this it is clear that
we are making an assumption: How do we know that the limit of a quotient is the
quotient of the limits?

Another example is

—4
Hm ———— = lim (Vx + 2) = 4
x—4 x — 2 x—4

To defend the last step, we may use the definition directly. But if we have already

done that in the case of

lim Vx =2 (Problem 8, Section 2.2)

x—4

it hardly seems worthwhile to suffer through it again. A better approach is to write

lim (Vx +2) =lim Vx+lim2=2+2=4

x—4 x—4 x—4
Again, however, note the assumptions: The limit of a sum is the sum of the limits;
the limit of a constant is the constant.

Perhaps these assumptions strike you as obvious, but some of them are not
easy to establish, in general. In this section we state theorems about limits for
future reference, offering only incomplete proofs (with more details in the prob-
lem set).
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THEOREM 1 (Algebra of Limits)

Let f and g be real functions whose sum, difference, product, and quotient
are defined, and suppose that

lim f(x) and lim g(x)

x—a

exist. Then

1. lim (f+ ¢)(x) =lim f(x) + lim g(x)
2. lim (f— g)() =lim f(x) — lim g(x)
3. lim (fg)(x) = [lim f(x)][lim g (x)]

lim £(x)

4. lim (f/g)x) = lim g(x)’

provided that lim g(x) # 0

That is, the limit of a sum (difference, product, quotient) of two functions
is the sum (difference, product, quotient) of their limits.

In Theorem 1 we are assuming that the domains of f and g overlap, so that
there is a common domain where they are both defined. Their sum, difference,
product, and quotient are the functions f + ¢, f — g, fg, f/ g defined by

(f+g)x)=f(x) + g(x) (f—8)x) =f(x) — g(x)
(f8)(x) = f(x)g(x) (f/g)x) = f(x)/g(x)

(The quotient requires the additional assumption that the common domain of f
and g contains points at which g is not zero, so that f/ ¢ has a domain.)

It is doubtful whether a straightforward proof of Theorem 1 is very enlighten-
ing, particularly since the technical details are gruesome in places. In the problem
set we will outline some ingenious ways that mathematicians have devised to
avoid the difficulties; we offer a proof of (1) in an optional note at the end of this
section.

In many applications of Theorem 1 two special limits are needed, namely

imx=a and ime=c

X—a X—a

Each of these sounds obvious when put into words:

* The function f(x) = x approaches a when x approaches a.
e The constant function f(x) = ¢ approaches ¢ when x approaches a.

We will take them to be obvious with the observation that proofs based on the tech-
nical definition of limit in the last section can also be given.
A special case of (3) in Theorem 1 is worth noting, namely

lim e g(x) = clim g(x)
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In other words a constant factor may be “moved across the limit sign.” This fol-
lows from (3) by taking f(x) = ¢ and using the fact that lim ¢ = .

m Example 1

Use the algebra of limits to evaluate linll (5x — 2).

Solution

You should supply a reason for each step in the following:

Iim 5x —2)=limb5x —lim2=5limx —2=5(1)—2=3 [ |

x—1 x—1 x—1 x—1

More generally, if f(x) = ax + b is any linear function and x ; € R, then

lim f(x) =lim (ax + b) =limax + limb=alimx +b=ax,+b

XX XX, X=X XX, XX,
Having gone through this tedium once, you should not repeat it! For the
answer is simply f(x,). In other words, if fis a linear function and x ;€ R,

lim f(x) = f(x,)

XX

The limit may be found by evaluating the function at the point approached.
A function with this property is called continuous at x,, an idea of such impor-
tance that we shall return to it repeatedly throughout calculus.

Continuity of a Real Function
Suppose that X is a point of the domain of the real function 7. We say that fis continuous at
X, if
lim £(x) = f(x,)

X=Xy

The geometrical significance of continuity at a point is that a traveler on the
graph of y = f(x) encounters the point (x,, f(x,)) where it “should” be. (See Figure
1.) More precisely, three conditions are met when fis continuous at x:

1. The graph has a point corresponding to x = x; that is, x, is in the domain
of f.
2. Atraveler on the graph can identify a point toward which he is heading as

x — x; thatis, lim f(x) exists.
X—Xo

3. The point in (2) that “should” be on the graph coincides with the point in
(1) that is on the graph; that is,

lim f(x) = f(x,)

X—)XO

In other words, the traveler encounters neither a missing point nor a
displaced point at x ;, but the point he expected.

The analytic meaning of continuity at x, is that the limit of f(x) as x—x,
may be found by substitution of x into f. We will return to this idea in Chapter 4.

y=1fXx)

\ (X, F(x,)

|

|

|

|

|

|

X, ¥
Figure1 Continuity of fat x,
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Meanwhile you may assume that virtually every real function we have named in
this book is continuous at each point of its domain. This includes the functions
classified in Section 1.5 (constant, linear, power, root, polynomial, rational, and
algebraic) and the six trigonometric functions (sine, cosine, tangent, cotangent,
secant, and cosecant).

On the other hand, you should not use the formula

}gg fx) =f(x,)

indiscriminately. If
=1
x—1

flx) =

for example, we cannot find lirrll f(x) by evaluating f(1) because 1 is not in the
X—
domain. Even when the point of approach is in the domain, the formula is not

necessarily correct, as the next example shows.

m Example 2
Define the function f by
x> —4 .
if x#2
f(x) = x—2
1 ifx=2

Since f(x) = x + 2 when x # 2, while f(2) = 1, the graph of fis a straight line with a

4 point displaced (Figure 2). As you can see,
Figure2 Straight line with a lim f(x) =4 # f(2)
point displaced 2
so fis not continuous at 2. |
m Example 3

Confirm that the function

3x2+ 1
x —2

flx)=

is continuous at each point x, # 2.

Solution
The problem is to show that

lim f(x) = f(x,)

X=X
Suppressing x — x, in each limit to save writing, we have

lim £(x) = lim 3x2+1 lLm@Gx2+1) lim3x2+lim1 3lima®+ 1
1 =11 = — _
f x—2 lim(x —2) lim x — lim 2 X, — 2

~3(imx)(limx) + 1 3(x)(xy) +1 3y +1
Xp— 2 Xp— 2 Xy — 2

= flx,)
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As you can see, establishing continuity of a rational function is just a matter of
applying the algebra of limits repeatedly until we reduce the problem to the evalu-
ation of “obvious” limits. |
m Example 4 y
The function tan x cot x has the constant value 1 wherever it is defined. (See Figure
3.) Its graph is the horizontal line y = 1 with holes punched out at (0,1), (£7/2,1), y = tan xcot x
(=7 1), ..., from which it is apparent that —O—(O—O—O—O—
lim tan x cot x = 1 r 0 & om o X
x—0 T o >

On the other hand, suppose we apply (3) of Theorem 1, writing

lim tan x cotx = (Hm tan x)(lim cot x) = (0)<lim cot x) =0

x—0 x—0 x—0 x—0

If this is correct, we have proved that 1 = 0. Before reading on, can you find the fal-
lacy?

The point is that lim f(x)g(x) = [lim f(x)][lim g(x)] only when the limits on the
right side exist. It is tempting to argue that (0)(lim cot x) = 0 on the premise that
“zero times anything is zero.” The correct statement, of course, is that zero times
any real number is zero. Since

lim cot x does not exist  (Figure 8, Section 1.6)
x—0

our “equation” reads 1 = (0)(horseradish). [ |

The next theorem is easier to illustrate than it is to state. Hence we present
some examples first.

m Example 5

To find lin(} V cos x, we reason intuitively as follows. As x— 0, cos x approaches 1.
X!

The square root of a number close to 1 is itself close to 1. Hence

Iim Vcosx =1

x—0

An analysis of this reasoning reveals that we are treating Vcos x as a composite
function (cosine followed by square root). The “inside function” is g(x) = cos x; the
“outside function” is f(x) = Vx; the composition is

Flg@)] = f(cos x) = Vicos x

What we did to evaluate the limit was to work from the inside out. That is, we
ignored the outside function temporarily while we determined that cos x—1 as
x— 0. Then we applied the outside function to obtain Vcos x— V1 as x—>0. In
symbols,

lim Veosx = Viimcosx = V1 =1

orlim f[ g(x)] = f[lim g (x)].

Figure 3 Graph of
y = tan x cot x
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The heart of the matter is the formula

lim f[g(x)] = f[lim g(x)]

which indicates how the limit of a composition is found by working from the

”

inside out. An informal way of putting it is that the symbols “lim” and “f” are
interchanged. Instead of finding the limit of f we evaluate f of the limit. (Sufficient
conditions for this to work are discussed after Example 6.) |

m Example 6
To find lirrlx (3x — 1)%, we could apply (3) of Theorem 1 repeatedly, writing
lim (3x — 1)® = [lim (3x — 1)][lim (3x — 1)][lim 3x — 1)] =23 =38

It is easier, however, to think of (3x — 1) as a composition, namely the linear func-
tion g(x) = 3x — 1 followed by the power function f(x) = x3. Then

lim 3x — 1)3 = lim f[ g(x)] = f[lim g(x)] = f(2) = 8

When you get used to this idea, you will not need to introduce the functional
symbols fand g. Just interchange “lim” and “outside function,” writing

Iim@x — 1) =[lim 3x —1)]?=23=8
In other words, work from the inside out. [ |

The obvious question to raise at this point is under what conditions does the

formula

lim f[g()] = f[gg; g(x)]

apply? The obvious answer is that lim g(x) must exist and lie in the domain of f,
since otherwise the right side would not make sense. It is not quite that simple,
however. The interchange of “lim” and “f” requires f to have the property

lim f(u) =f(u,) whereu,=1lim g(x)

U= x—a

(That is, f should be continuous at u,.) This condition is equivalent to

lim f(u) = f(lim u) (why?)

U=, U—,

which is precisely the interchange property needed.

THEOREM 2 (Composite Function Theorem)

Let fand g be real functions whose composition f[ g(x)] is defined. Then
lim f[g(x)] =f[lim g(x)]

provided that u ;= lim g (x) exists and fis continuous at u .
xX—a

We offer an informal proof of Theorem 2 in an optional note at the end of this
section. Also see Problems 43 and 44 in the problem set.
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m Example7
Explain why the Composite Function Theorem does not apply to

. x
lim tan =
X—>T

Solution

It is incorrect to write

lim tan > = tan (lim > | = tan —
mtan - = tan | ilim — | = tan —
X7 2 (x—m 2) 2

For although the limit of the inside function exists, namely

i YT
T2 2
the outside function (tangent) is not continuous at u . [In fact, tan (7t/2) is not even
defined.]

Despite this remark, it is still possible to use the idea of the Composite Func-
tion Theorem. When x approaches m, the inside function x /2 approaches /2. Since
tangent is unbounded when its input is allowed to approach /2 (Figure 7, Section
1.6), we conclude that

. be .
lim tan =~ does not exist ||
X—>T

Our next theorem is so geometrically apparent (Figure 4) that we omit its proof
altogether. (See the problem set, however, for hints on how to construct one.) This
statement is called the Sandwich Theorem by some. Another descriptive title (bor-
rowed from baseball) is the Squeeze Play Theorem.

Figure4 Squeeze Play Theorem

THEOREM 3 (Squeeze Play Theorem)

Suppose that f(x) is between g(x) and h(x) for all x near a. If g(x) and K (x)
have a common limit as x—a (say L), then

lim f(x) =L

X—a
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An application of the Squeeze Play Theorem may be seen in Example 9, Sec-
tion 2.2, where we evaluated

lim x sin —
x—0

Since f(x) = x sin (1/x) is between g(x) = x and h(x) = —x for all x # 0 (Figure 12,

Section 2.2) and since

lim g(x) =lim h(x) =0

x—0 x—0

the limit of f(x) must be 0.

Optional Note (on the proof of (1) in Theorem 1)
Let

A= lxlg; flx) and B= EE,; g(x)
The problem is to prove that
{Ciga\(erg)(x):AJrB
In other words, given ¢ > 0, we must name 6 > 0 such that
0<|x—al<6= |(f+g)(x)—(A+B)| <e¢
But

[(f+9)x)—(A+B)| = |[f(x) — Al + [g(x) = B]| = | f(x) — A| + [g(x) — B

(See the Triangle Inequality in Section 1.1.) To force this to be less than &, we need only force
f(x) and g (x) to be within € /2 units of A and B, respectively. Since we know from the defini-
tions of A and B that this can be done by keeping x sufficiently close to a, the proof should be
clear in outline.

To be precise in detail, we know there are positive numbers 6, and 0, such that
£
0< |x—al <o,= |f(x)fA| <E
and

0<|x—al <5,= |gkx)—B] <§
Let 6 be the smaller of 6, and 6,. Then
0<|x—al<o6= |fx)— Al <§and |g(x) — B <§

= [(f+9)x) — (A+ B)| <§+§=g

Optional Note (on the proof of Theorem 2)

Instead of a formal proof, we offer the following intuitive argument. To show that
lim flg(x)] = f(u,)

we suppose that a skeptic has named a neighborhood of f(u ). (See Figure 5.)
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Figure 5 Intuitive argument for composite function theorem

Our problem is to confine f[ ¢ (x)] to this neighborhood by keeping x sufficiently close to a.
We do this in a chain of steps:

1. Confine f[ g(x)] to the given neighborhood of f(u ;) by controlling 1 = g(x). We know this
can be done because

lim f(u) = f(u,)

u—u,

2. Force g(x) as close to u, as required in (1) by keeping x near a. We know this can be done
because

lim g(x) = u,

A formal version of this argument is outlined in Problems 43 and 44 in the problem set.

. 1-2 P +1
Problem Set 2.3 17, lim 2 18 lim
-1 X —x +4 =0 x + 1
Evaluate each of the following by using properties of limits. s R
o —1 . x—38
1. Tim (75 +3) 2. lim (9 = 5) 19 lim = 20. lim "
-1 o2+ x—-12
i i —x2 21, lim ——————~
3 m= 4 lim (5 = x?) -t 12

5. lim (x% + x) o Vx+4-2

ey 22. lim L Hint: Rationalize the numerator.
x—0
6. lim Vx — 5 Hint: Use Theorem 2 with continuity of x—2 1 4
x5 . 23, Iim ——— 24, lim -
root functions. =2 V4 — 2 2 \x—2 x*—4
s AT A /a _ 2
7. EE; x(x = 3) 8. 1}3} 9-x 25. lim sin2x Hint: Use Theorem 2 with continuity of
0 trigonometric functions.
9. lim x3/2 10. lim x?2/3
x1—>4 x1—>8 26. lim cos 2x 27. lim sec Vx
x—0 x—0
1
. _ 3/4 . . 1
1. {}Eg (16 —x) 12. }}3’1‘ X 28. lim 29. lim x cos — Hint: Use
x—0 COS X x—0 X
Theorem 3.
.4 . x—3
13. lim — 14. lim
x=2 X w0 2x + 1 30. lim V1 — sin’x 31. lim V1 — cos’x
XN x—31/2
3x +1 -3
15. lim — 16. lim =
-1 3x — 1 =33 —x 32. lim |secx + tan x|

x—n/4



88 CHAPTER 2 ®m Limits and the Derivative

In the text we said that virtually every function named in this 39.

book is continuous at every point of its domain. The follow-
ing problems are designed to justify that statement (in part).

33. A polynomial is a function of the form
Px)=a,+a,x+a,x*+ - +ax"
where 1 is a nonnegative integer and each g, is a real
number. Show that if x, € R, then
lim P(x) = P(x,)

(Thus a polynomial is continuous at every point
x, € R.) Hint: We already know that

limc=c and limx=x,
XX, XX,
34. We know that sine and cosine are continuous at 0,
that is,

lim sinx = sin 0 and lim cos x = cos 0
x—0 x—0

(See Problems 25 and 40, Section 2.2.) To prove that
sine is continuous at any x , € R, we lift ourselves up 4
by our bootstraps:

(a) Confirm that

43.

sinx = sin [(x — x,) + x]
= sin (x — x,) cos x, + cos (x — x ) sinx,

(b) Why does it follow that

lim sin x = cos x; + lim sin (x — x)

XXy X—Xg 44.

+ sinx - lim cos (x — x)?

x>,

(c) Now explain why lim sin x = sin x,,.
X—Xo

35. Prove that cosine is continuous at every x, € R by imi-
tating Problem 34.

36. Why does it follow from Problems 34 and 35 that tan-
gent, cotangent, secant, and cosecant are continuous
wherever they are defined?

In the text we said that the technical details of the proof of
Theorem 1 are gruesome in places. There are clever ways to
avoid them, however; if you are interested, do Problems
37—42.

37. Now prove (2) of Theorem 1. 45.

38. Use the definition of limit to show that if
lim f(x)=0 and lim g(x) =0

then lim ( f¢)(x) = 0. (This proves (3) of Theorem 1 in
X—a

the special case where the limits of fand g are 0.)

40.

41.

Now prove (3) of Theorem 1 by letting
A=lim f(x) and B =lim g(x)

and by writing
(fe)(x) = [f(x) — Al[g(x) — B] + Bf(x) + Ag(x) — AB

Use the definition of limit to show that if u, # 0, then
1 1

u—uy U Uy

Hint: Imitate Example 5, Section 2.2.

Suppose that lim g(x) exists and is not 0. Why does it
xX—a
follow from Problem 40 that

1 1
im——=—"7-=7-7
x—a g(x) lim g(X)

Hint: Use the Composite Function Theorem. (Objection:
That comes after Theorem 1. Answer: Its proof is inde-
pendent of Theorem 1. See Problems 43 and 44.)

. Now prove (4) of Theorem 1.

Explain why the Composite Function Theorem in the
text is equivalent to the statement that if

limg(x)=u, and  lim f(u)=f(u,)

then lxig}f[g(x)] = f(uy).

To prove the version of the Composite Function Theo-
rem stated in Problem 43, let L = f(u,) and assume that
& > 0 has been given. The problem is to name 6 >0
such that

0<|x—al<d6= [flg)]-L|<e
(a) Explain why thereis a p > 0 such that
lu—u,l <p=|fu)-L|<e
(The symbol p is the lowercase Greek letter rho.)
(b) Explain why there is a 6 > 0 such that

0<|x—al<6=|gx)—u,l<p

(c) Why does it follow from parts (a) and (b) that
0<|x—al<d6= |flg)]—LI<e?

To prove the Squeeze Play Theorem, we suppose that a

skeptic has named a neighborhood of L (say N). The

problem is to force f(x) € N by keeping x near a.

(a) Explain why ¢(x) and /(x) can be forced into N by
keeping x near a.

(b) Why does it follow that (for these values of x) f(x)
isin N?

(¢) Can you make this argument more formal, so that
a confirmed skeptic would believe it?
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46. Use the table feature of your graphing calculator to find

lim 26— 4/ +2)

x—-2
(Be sure to approach 2 from both sides by selecting val-
ues of x such as 1.9, 1.99, 1.999, and 2.1, 2.01, and
2.001.)

47. Refer back to the greatest integer function defined in

Problem 7 of Section 1.4. This function is often repre-
sented as f(x) = [x]. Find

lim fx) and lim f(x)
x—5 x—5

by sketching a graph. (Do you think the left and right

limits would differ for any other values of x? What sort
of values?)

Find the integer function in your graphing calculator
and use the table feature to verify your results numerically.

2.4 The Derivative of a Real Function

In Section 2.1 we discussed the problem of tangents and the problem of velocity.

Let us summarize those discussions and make some general observations.

1. Slope of a Curve. If (x,,y,,) is a point of the graph of the real function
y = f(x), we find the slope at (x,,y,) as follows.
(a) Let (x,y) be a point of the graph “near” (x,y ). The slope of the line
containing (x,,v,) and (x,y) is given by the difference quotient
Y=Y _ f(x)— f(x)

X =X X — X

Qx) = (x # x,)
(b) Bring (x,y) closer to (x,,y,), thereby making x approach x .. If this
causes Q(x) to converge to a definite value m, we write
m = lim Q(x) = lim f&) ~ fx)
XX, X—X, X — Xy
and call m the slope of the curve at (x ;). Since the value of the limit

depends on x, the slope is a new function, m(x ) = slope at (x,y,,), or
simply m(x) = slope at (x,y) if we drop the subscript.

2. Velocity of a Moving Object. Let s = p(t) be the position at time ¢ of an object
moving in a straight line (where p is a real function). We find the velocity at
time ¢, as follows.

(a) Lettbe aslightly different time. The average velocity during the time
interval with endpoints t,and t is

_ change in position _ p(t) — p(t,)
change in time F—t,

Q(t) (t#t,)

(b) Let t approach t . If this causes Q(f) to converge to a definite value v, we
write

v =1im Q(t) = lim pt) = plty)

t—sto t—to t— 1,
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and call v the velocity at time t,. Since the answer depends on tor the
velocity is a new function, v(t;) = velocity at time ¢, or simply
v(t) = velocity at time ¢ if we drop the subscript.

It is a principle of human thought and language that when we encounter dis-
tinct problems with the same answer, we ought to ignore the inessential details of
the problems and invent a word for the idea they have in common. The forms of
the answers in (1) and (2) are identical. So we forget about geometry (slope of a
curve) and physics (velocity of a moving object) and concentrate on the mathemat-
ical substance of the process illustrated. In each case a new function is derived
from a given one by evaluating the limit of a difference quotient. The new function
is called the derivative of the given function, as in the following definition.

Let fbe a real function with domain D and suppose that x, is an interior point of D. The
difference quotient associated with fat x, is

_f0 = f0x)

QW) X— X
0

(x # x,and x € D)

The derivative of fat x, is the number

f'(x,) =lim Q(x)

X%XO
(provided this limit exists, in which case we call fdifferentiable at x,).

If Sis a subset of the domain and fis differentiable at each point of S, we say that fis
differentiable in S.

The function f" whose domain is the set of points at which fis differentiable and whose
value at xis f'(x) is called the derivative of f.

The above definition requires x ; to be an “interior point” of D, that is, a point with the prop-
erty that neighboring points are also in D. More precisely, there is an open interval contain-
ing x , (a neighborhood of x ) that lies in D. This guarantees that f(x) is defined for all x near
x,, which is essential for evaluation of the limit of Q(x) as x approaches x .. The requirement
can be relaxed in some circumstances, however. If x o is an endpoint of an interval in D, the
limit is one-sided; sometimes we can still make sense of it. (See Example 3.)

m Example 1
Find the derivative of f(x) = x3.

Solution
The difference quotient associated with fat x , is

fC) = fxg) _ X — x5 (x = x) (¥ + xx5 + x)

X = X X = X, X = X,

Qlx) =

=x2+axx, +x? (x#Fx)
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Since

lim Q(x) = lim (x2 + xx, + x,2) = 3x,?

X=X, x>,
the derivative at x, is f '(x,) = 3x,2. Having arrived at this, we may observe that in
the beginning x, was any real number. The subscript is superfluous; we might as
well say that f ' is defined by f'(x) = 3x2 [ |

The observation at the end of Example 1 sometimes confuses people. What
you should note is that the letter used is immaterial. We may write f'(t) = 3t? or
f'(a) =3a?or f'([]) = 3> The form is what counts in the definition of a function,
not the symbol used to identify the independent variable. The reason for the sub-
script in the first place is that in the process of examining the difference quotient
we needed a label for its independent variable. We chose x, which means that we
needed a different label for the point at which the derivative is to be evaluated.

To clarify this matter further, suppose we feel like calling the original point x.
Then we need another letter for the independent variable in Q; suppose we adopt
z. The difference quotient associated with f at x is then

()_f(z)—f(x)_z3—x3_(z—x)(22+zx+x2)
DTy T i zZ—x

Q

=z2+zx +x2 (z#x)

Since

lim Q(z) = lim (z% + zx + x?) = 3x?
X Z—oX

the derivative at x is f '(x) = 3x2

m Example 2
Find the derivative of f(x) = V.

Solution
The difference quotient associated with fat x (where x > 0) is
Q(Z):f(z)—f(x):\/—\/;: Vz - Vax

X z— X (\/z—\/;)(\/z+\/;)

—

(z#xandz=0)

1
CVz+ Va

The derivative at x is
£(0) = tim Q) = lim —— -
x) = lim Q(z) = lim =
o = Vz + Vx 2V
Since x was any positive number, we conclude that fis differentiable in the interval
(0,90). ]
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Note in Example 2 that the domain of fis [0, %). We did not consider the deriva-
tive at x = 0 because 0 is not an interior point of the domain. Suppose we stretch
the definition, however, and try it. The difference quotient associated with fat 0 is

Z):M:ﬁ:L (z>0)

Q( z—0 z \Vz
Since Q(z) increases without bound as z— 0,

lim Q(z) does not exist
z—0

and we conclude that fis not differentiable at 0. (See Example 4, Section 2.1, where
we observed that the tangent at the origin is vertical and the slope is undefined.)

Despite the failure of this attempt to broaden the definition, there are times
when it makes sense. See Example 3.

m Example 3

The domain of f(x) = x%2 is [0,%). Even though 0 is not an interior point, let’s
include it in our analysis and see what happens. The difference quotient associated
with fat x (where x = 0) is

_ 32 _ 4302
Q(Z)Zf(z) fx) _z * (z#x and z=0)
z—x z—x
To simplify this, leta = x'/?and b = z'/2 Then
b —
0=

(b — a) (b + ba + a?)
(b—a)@®+a)
b2+ba+a2_z+\/;+x

b+a Vz+ Vax
Now we have to distinguish cases. If x > 0, we can write

f'(x)= lim Q(z) = lim m

X zZ—X

x+ Va2 +x
Vi + Vax

3
- (V%% = x because x > 0)

2V
3
- Vi

This argument breaks down if x = 0 (because 3x/(2 \/J;) is meaningless). At
x = 0, however, the difference quotient reduces to

Q) = 723:__00 -Vz (z>0)
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and hence
f'(0)= lzl_rg Qz) =

According to our definition of derivative, the endpoint x = 0 should not have
been included in this analysis. Let’s agree to examine endpoints, however, and to
accept the results when the limit of the difference quotient exists. Then we may
summarize Example 3 by saying that f(x) = x*/?is differentiable in [0,%) and

Frx) = {gvx if x>0
0if x=0

As you can see, it is unnecessary to separate the cases x > 0 and x = 0 in the end.
The formula f'(x) = 3V/x (if x = 0) covers both possibilities. The graph of y = x3/2
(unlike that of y = x!/2, which has a vertical tangent at the origin) should be drawn
with slope 0 at the origin. (See Figure 1.) [ |

The effect of our agreement in Example 3 is that we are extending the defini-
tion of derivative to include endpoints. The limit of the difference quotient in such
a case is “one-sided,” in the sense that

Q(z f (ZZ) f&) (where x is an endpoint)
is examined only for values of z on one side of x. In Example 3, for instance, where
we wrote
232 _
_ﬂ@:hm—————hmwf—o
z—0 Z z—0

the limit is evaluated by making z approach 0 “through positive values.” (Other-
wise Vz would be meaningless.)

Sometimes this sort of thing complicates the theory. (We will point it out when
it does.) But on the whole, it is helpful to allow it. Would it not offend your intu-
ition to say that f(x) = x3/2 is differentiable only for x > 0? That would prevent the
natural extension of the formula f'(x) = %\/J; to the point x = 0, when it is plain
from the graph that there is a horizontal tangent at the origin.

We have defined the difference quotient associated with fat x to be

f(2) — f(x)

z—X

Qz) = (z # x)

(See Figure 2.) Sometimes it is more convenient to denote the point z by the label
x + h (h # 0), the idea being that when # is small, x + } is near x. (See Figure 3.)
Then the difference quotient is a function of &, namely

flx + h) — f(x) _ flx + h)— f(x)
(x +h) —x h

q(h) = (h #0)

and the derivative of fat x is

10 = limah) =t T

y=x"

y=

X2

Figure1 Horizontal and
vertical tangents at the origin

fixed variable (z—x)
x oz
Figure 2
fixed variable (h—0)
)I( - X ll- h

Figure 3
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m Example 4

Discuss the problem of finding the derivative of f(x) = sin x.

Solution

The difference quotient associated with fat x is

sinz — sinx
Q@e)=—"—— (#x)
z—x
which does not simplify in any obvious way. If we substitute x + & for z, however,
the difference quotient becomes

sin (x + h) — sinx
h

q(h) = (h #0)

and a possible simplification suggests itself. Using the addition formula
sin (u + v) = sin 1 cos v + cos u sin v

we have

sinxcosh + cosxsinh —sinx  sinx(cosh — 1) + cosxsinh
h a h

+ cos x sin
h

It is not obvious how the expressions (cos h — 1)/h and (sin 1)/ h behave when h

q(h) =

cosh — 1
h

=sinx (

approaches zero, but for the sake of argument suppose that their limits are a and b,
respectively. Then

flx) = Err(} q(h) = (sin x)(a) + (cos x)(b)

and the problem is solved. If you have an electronic calculator, you can probably
guess what 2 and b are by computing the above expressions for values of / near 0.
For the present, however, we will leave the problem at this stage. ]

According to the terminology we have now adopted, the two equivalent prob-
lems of Section 2.1 are solved by finding a derivative:

1. Given a curve with equation y = f(x), the slope at (x,y) is the derivative
m(x) = f'(x).
2. Given a position function s = p(t), the velocity at time ¢ is the derivative

o(t) =p’(t).

These are two interpretations of the derivative. There are many others, as we shall
see.

Calculus is a subject with a rich history. It should not surprise you that there
are many alternate symbols for the derivative; you should learn to live with the
ones in common use. Chief among these, besides the notation f'(x) already intro-
duced for the derivative of y = f(x), are
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e y' (read “y prime”)
dy
o Ir (read “dee y, dee x”—not “dy over dx”)
e D_y (read “derivative of y with respect to x”)

The notation dy/dx is due to Leibniz, who regarded dy and dx as separate entities
and dy/dx as a true fraction. Eventually we’ll do the same; the symbol is very use-
ful. For the present, however, you should not think of dy/dx as a fraction; it is just
another notation for the derivative.

Depending on the context, the above symbols are of varying precision. They
must be used with due attention to the message intended.

m Example5
If y = f(x) = x*, then
4 _ _ 2
£11) = f(x) f(1) limx 1=lim(x Dx+1D(x*+1)
1 x>l X — x>1 x—1

=limx+1)x2+1)=4
x—1
The notation f'(1) = 4 describes the situation precisely: We have evaluated the
function f' at the point 1 to obtain the number 4. The other symbols mentioned
above are not as useful in this context. For example, if we were to write y’ = 4 or
D_y = 4, the reader might infer that the derivative is the constant function f'(x) =
4, whereas the correct formula is f'(x) = 4x® (Confirm!) Some writers introduce
notation like

!

y

=4 or

x=1 Dy|*c—1

to represent the situation, but the functional notation f'( 1) = 4 is simpler. [ |

m Example 6
The derivative of y = f(x) = 2x — 1)%is

£r(x) = 4Qx — 1)

(as you can check). The same message is conveyed by

dy

o =4(2x—-1) or

D,y =4(2x—1)

but the notation y’ = 4(2x — 1) is risky in some situations (because the symbol y’
makes no reference to the independent variable). Suppose, for example, that we
substitute u = 2x — 1iny = (2x — 1) to obtain y = u?2 The derivative of y = u2asa
function of uis dy/du = 2u or D,y = 2u (Example 2, Section 2.1). If we were to write
y' = 2u, the reader would have a right to complain. For there is a distinction
between y' = 4(2x — 1), the derivative of y as a function of x, and y' = 2u, the
derivative of y as a function of u. It is for this reason, among others, that mathe-
maticians have developed the following terminology, which sometimes strikes the

beginner as jargon.

GRAPHING CALCULATOR CONCEPTS

Evaluating Derivatives

Your graphing calculator can evaluate
the first derivative at a given value of
the input variable! Investigate how
online or in your graphing calculator
manual. You will probably be asked
to enter the function, just as you
would to graph it. Then you will use
the first derivative option and choose
a value of x. Try to remember to use
your graphing calculator to verify the
derivatives you find throughout this
chapter.
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The symbols dy/dx and D, y are translated derivative of y with respect to x. To differen-
tiate y with respect to x means to find the derivative of y = f(x), and the process of
finding it is called differentiation.
It is also common practice to regard the symbols d/dx and D_ as operators (the oper-
ation being differentiation). Whatever is written immediately following them is
the function being differentiated. For example,
d
a(xz) =2x (Example 2, Section 2.1)
and
3
D (x3/2) = E\/; (Example 3)
One advantage of this notation is that the expression in parentheses need not be
identified by some other symbol, say y or f(x). That saves writing. Do not, how-
ever, mix the notation! Sometimes students write
d
% (x2) =2x
which is confused. We should either let y = x? and say that dy/dx = 2x, or forget
about y and simply write
d
a(xz) =2x [ |
Problem Set 2.4 12. F'(0)if F(x) = Vx

In each of the following, find the indicated derivative by

In view of the result, how would you draw the graph

setting up the difference quotient associated with the func- through (0,0)?
tion at the specified point and then evaluating the appropri- 13. G'(1)ifGlx) =1/ Vx
ate limit.
14. f'/()iff(H)= V1 —t
L frO)iff(x) =x*—4 How could the result have been predicted from the
How could the result have been predicted from the graph?
graph?
15. The difference quotient associated with f(x) = V25 — x?
2. ¢'(2)ifg(x) = x2 — 2x 3. ¢'(-1)ifp () =312 — ¢ at3is
4. H'(2)if H(x) =8 — x3 5. f’(O)iff(x)=x3+5 ) V25 — x2 — 4
Y)=—==_- =
6. g'(1)if g(v) = v° 7. p'(0)ifp(t) = t Vi + 2 x -3
. and its limit as x— 3 is f' (3). Use a calculator to evalu-
8. F/(1)if F(x) = (x — 1)\/; 9. p'Mifp(t) = Py ate Q(3.1), Q(3.01), and Q(3.001), thus obtaining
successive approximations to f'(3).
10. ¢'(0)if =—
8'0ifg() 2+ 1 16. Repeat Problem 15 by evaluating Q(2.9), Q(2.99), and
In view of the result, how would you draw the graph 0(2.999).
through (0,1)?
/ 17. Let Q(x) be the difference quotient associated with
’ : — 42/3
11 f0)if f(x) = x f(x) = (x2 + 1)*at 1. Approximate f’ (1) by evaluating
In view of the result, how would you draw the graph Q(1.1), Q(1.01), and Q(1.001).

through (0,0)?
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18.

19.
20.

21.

Let Q(x) be the difference quotient associated with
f(x) = sin x at 0. Approximate f'(0) by evaluating
Q(*0.1), Q(*0.01), and Q(*0.001). Note: The angle se-
lector on your calculator must be set on radians. (Why?)

Repeat Problem 18 in the case of f(x) = cos x.

Repeat Problem 18 in the case of f(x) = 2*. Note: You
may not know how 2~ is defined for irrational values
of x. But a calculator will supply approximations (if it
has a y* key).

Repeat Problem 18 in the case of f(x) = e*. Note: e is the
base of natural logarithms mentioned in Section 1.1.
Use the e* key on your calculator.

In each of the following problems, find the derivative at X,

as the limit of the difference quotient in the form

)~ f(x)

X = X

Then drop the subscript to obtain a formula for £’ (x).

22.
24.

26.

28.

29.—

fx)=2x—-3 23. f(x) =x2—2x
fx)=x2+x-2 25. f(x)=2x*+x
5 2
f(x)—; 27. f(x)—;
x—1
flx) = »
35. For the functions in Problems 22 through 28, find

f'(x) as the limit of the difference quotient in the form

f(2) = f(x)

zZ—X

36.-42. For the functions in Problems 22 through 28, find

£’ (x) as the limit of the difference quotient in the form

fx +1m)— f(x)
h

In each of the following problems, find the indicated

derivative as the limit of an appropriate difference quo-

tient. Use the form of the difference quotient that seems

most convenient.

43.

45

47.

49
51

53

55

fr)iff(x) =x2+x 44. ¢'(x)if g(x) = 5x2 — x
dy/dxify=2x3-7 46. D yify =4 —x*
ds/dtifs=1t3—t+1 48. y'ify =x*+x2+2
y ify=x*-3x+1 50. Duifu =1/t
Freitfe) = 52. F'()if E(x) =2 >
g'(x)ifg(x) = Vax 54. F'(x)if f(x) = x2/°

p'@®)ifpt)= V1 -t

56.

57.

58.

59.

Use the definition to show that the derivative of a
constant function is the zero function. How could
this have been predicted from a graph?

Use the definition to show that the derivative of a lin-
ear function, f(x) = mx + b, is f' (x) = m. How could
this have been predicted from the graph?

The graph of y = |x| is shown in Figure 5, Section 2.1.
What is its slope when x > 0? when x < 0? Use your
answers to explain the formula
D |x| =
: | x|
What is the domain of this derivative?

A painless way to differentiate f(x) = V1 — x%is to

interpret the derivative as slope.

(a) Whatis the graph of f?

(b) Reasoning from the graph, what would you expect
f'(x)tobeatx =0?atx = +1?

(c) If (x,y) is any interior point of the graph, explain
why the slope of the tangent at (x,y) is —x/y. Why
does it follow that

—x
") =—F—=2
f V1 -2

What is the domain of f'?

. Use your graphing calculator to gather “empirical evi-

dence” in support of the result obtained in Problem 59
(c). Enter y = f(x) and use your first derivative option
to find the values

r3) e ()

Then compare these values to those you obtain by eval-
uating the derivative function given in Problem 59.

. Use the drawing feature of your graphing calculator to

directly draw a tangent to the curve
X
YT
atx = 1. Visually estimate the slope of this tangent. Use
your first derivative option to verify that the slope of
this line is 0. Where else on the graph does the tangent
line appear to be horizontal?

. Use the drawing feature of your graphing calculator to

directly draw a tangent to the curve
X
YT
atx = 2. Visually estimate the slope of this tangent. Use
your first derivative option to verify that the slope of
this line is — 5 . Is there any other point on the graph
with a tangent line parallel to this one?
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2.5 Differentiation of Sine and Cosine

In Example 4 of the last section we discussed the problem of finding the derivative
of f(x) = sin x. A convenient form of the difference quotient turned out to be

_f(x+h) —f(x) sin(x+h) —sinx sinxcosh + cosxsinh — sinx
B h - h - h

q(h)

sinx(cosh — 1) + cosxsinh

h

cosh — 1
h

sin x (

N . sinh
cos p

Assuming that the expressions (cos 1 — 1)/h and (sin h)/h have limits as h— 0, we
may use the algebra of limits to write

flx+h) — f(x)

' =
£ hlilg h
= (sinx) lim (COSh_1 + (cos x) lim (smh)
h—0 h—0 h

But what are the values of these limits? Each takes the form 0/0 when 0 is substi-
tuted for i; evidently something more clever is needed.

The limit of (sin )/ h turns out to be the crucial one. Once its value is known, it
is an easy matter to find the limit of (cos & — 1)/h, as we will see. Then we will
know what the derivative of sin x is. All the other trigonometric functions can be
differentiated in terms of sine (as we will show in the next chapter), so the whole
calculus of these functions flows from this limit.

y
To investigate the limit, look at the unit circle. Assuming that 0 < t < m/2 (Fig-
) Q ure 1), observe that
area of AOBP < area of sector OAP < area of AOAQ (1)
y
5 f The area of AOBP is
X B X
A(1,0) 1 1 . . . .

5%y =5 cos tsint  (by definition of sine and cosine)

The area of a circular sector of radius r and central angle 0 (in radians) is A = %rZG.

Figure 1 cosfsint<f< sinf  (See Problem 15, Section 1.6.) Hence the area of sector OAP is 5t. The area of
oSt AOAQis
1sint

1 1
5 (OANAQ) =2 (N(tan t) = 2~

(Why?)

Thus the inequalities in (1) become

1 fsi t<1t<1Sint
— cos tsin — —
2 2 2 cost
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Dividing by 3 sin t (which is positive because 0 < t < 1/2), we obtain

t 1
cost< —< ——
sint cost

or (taking reciprocals)

1 in t
p— > % > cos t (Order Property 7, Section 1.1) (2)

Now suppose that in the beginning we had assumed —m/2 < t < 0 instead of
0 <t < /2. Then —t would be between 0 and 7t/2, and the preceding argument,
with t replaced by —t, would yield

1 >sm(—t‘)

cos (—t) —t > cos (=)

This reduces to (2), because sin (—t) = —sin t and cos (—t) = cos t. Hence (2) is true
for all t # 0 between —7t/2 and 7t/2, whether positive or negative.

Evidently (2) is the heart of the matter. These inequalities show that
(sin t)/t is boxed in between cos t and 1/cos t. When t— 0, both cos t and 1/cos ¢
approach 1, so by the Squeeze Play Theorem we find that

Note that in the preceding argument f is simply a real number—the radian
measure of angle AOP. It is important to realize that if angle AOP were measured
in degrees, the above limit would no longer be 1, but 7t/ 180. Since we use the limit
to find the derivative of sine (see Example 2), everything in calculus that involves
this derivative is predicated on the assumption that the independent variable is
either a real number or an angle measured in radians. That is why the analytic
trigonometry described in Section 1.6 is indispensable in calculus.

If you have a calculator, you might check the entries in the following
table, which indicates how (sin t)/t approaches 1 as t—0. Be sure to put your
calculator in radian mode! If you set it on degrees, you will find the limit to be
/180 = 0.0174532925199 . . ..

Convergence of (sin )/t to 1 as t—0

sin t
! ot
+0.5 0.959
+04 0.974
+0.3 0.985
+0.2 0.993
+0.1 0.998
+0.01 0.99998

+0.001 0.9999998

GRAPHING CALCULATOR CONCEPTS

Visualizing s'Tnt
Use your graphing calculator to look
at the graph of

|dentify the viewing window chosen.
Why does it look as though the
function is defined at x = 0

(see GRAPHING CALCULATOR
CONCEPTS—_Graphing “Holes” on
p. 68)? Can you change the window
to make the “hole” appear?
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m Example 1

The other limit we need to know to find the derivative of sin x is
. cosh —1
lim ———

h—0 h

Evaluate this limit.

Solution

Multiplying numerator and denominator by cos i1 + 1, we have

cosh—1 (cosh —1)(cosh +1)  cos’h — 1

h h(cosh + 1) _h(cosh+1)
—sin®h
- in2h + 2 =
h(cosh + 1) (because sin?h + cos?h =1)
_ sinh sinh
h cosh + 1

When h— 0, the first of these fractions approaches 1, as we have just shown. The
second fraction approaches 0 because sin h1— 0 and cos h— 1. Hence

cosh —1
Im—— =0
hlir(} h
m Example 2

Show that the derivative of sin x is cos x.

Solution

It is just a matter of putting together what we know. If f(x) = sin x, the difference
quotient associated with fat x is

. cosh —1 sin h
gqh)=sinx |[——| +cosx |——
h h
as we showed at the beginning of this section. Since
limCOShi_1 =0 and lim sin =1
h—0 h 0 h
we find that
f'(x) = lim q(h) = (sin x)(0) + (cos x)(1) = cos x |
h—0

In the problem set you are asked to use a similar argument to show that the
derivative of cos x is —sin x. The results are fundamental in calculus involving the
trigonometric functions:

D/sinx) =cosx and D,[cosx) = —sinx
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The fact that

is important in other parts of calculus as well as in the differentiation of sine and
cosine. The following examples illustrate how it may be used to evaluate other

limits.
m Example 3
Evaluate
. sin2t
li
t—0 t
Solution

Multiply numerator and denominator by 2 to obtain

. sin2t . 2sin2t
lim = lim
t»0 t 0 2t
= lim 2 (sm x) (x = 2t, x—0 when t—0)
x—0
=2 limr =p.1=2 n
=0 X

m Example 4
Evaluate
lim t2 csc t
t—0
Solution

2 t
limt2csct =lim——=limt|—
-0 t»0sint t»0 \sint

. sint)| !
=lim¢t e

t—0

. t 71
=lim¢t - lim (sm) (algebra of limits)
-0 t—0 t
. __sint|™! . .
=lim¢t-|lim— (Composite Function Theorem)
t—0 t—0

=0-1=0 |
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Problem Set 2.5

1. Setting your calculator on degrees, compute (sin #) /¢
for t = 0.1, 0.01, and 0.001. What number does (sin t)/t
appear to be approaching?

2. Repeat Problem 1 with your calculator set on radians.

3. Setting your calculator on radians, compute f/sin 2t
for t = 0.1, 0.01, and 0.001. What number does t/sin 2t
appear to be approaching?

4. Setting your calculator on radians, compute t cot ¢ for
t = 0.1, 0.01, and 0.001. What number does t cot ¢
appear to be approaching?

Use the fact that ltirgl (sin t)/t = 1 to evaluate each of the fol-

lowing limits.

t in 3t
5. hm I 6 lim sm 3
t—0 sin t =0
7. tim S0
t—0 t
8. limtcott  Isthisequal to (lim ¢)(lim cot ¢)?
t—0 t—0 t—0
tan t 2t — 3sint
9. lim 2= 10. lim —— 220
t—0 t t—0
2(1 — t t—1
1. lim 27 08H) 12, lim =52
t—0 t t—0 tsect
i t in 5t
13. lim 210 14. lim 22
t—0 sint t—0 sin 3t
t —sint
15. lim cost — sint

toma 1 — tant

In each of the following, find the slope of the graph of y = f(x)

at the indicated point. Where possible, use the formulas
D (sinx) = cos x and D (cos x) = —sin x; otherwise use the
definition of derivative as the limit of a difference quotient.

16. f(x) =sinxatx = 7/2
How could the result have been predicted from the
graph?

17. f(x) =3 cosxatx =0

How could the result have been predicted from the
graph?

3
18. f(x) = cosxatx = 77:

19. f(x) =sinxatx =g

20. f(x):cosxatx:% 21. f(x) =cos2xatx =0
In each of the following, the position of a moving object at
time ¢ is given. Find the velocity at the indicated time.

22. p(t)=costatt:g 23. p(t) =sintatt=m

24. p(t)=2tantatt=0 25. p(t) =tan2tatt=0

26. Show that the difference quotient associated with
f(x) = cos x atxis

cosh — 1 . sin h
q(h)—cosx(h) smx( P )

and use the result to prove that D _(cos x) = —sin x.

27. Show that the difference quotient associated with
f(x) =tanx at x is

q(h) = -

sec? x tanh
1 —tanxtanh

and use the result to find D (tan x). Hint: Use the addi-
tion formula for tan (1 + v) and refer to Problem 9.

28. Show that D (sin 3x) = 3 cos 3x.

1
29. Show that D_ (COS ;) . sin %

30-33. Verify your answers for Problems 22-25 above using
your graphing calculator.

. Use the drawing feature of your graphing calculator to
directly draw a tangent to the curve

_ sinx

Cox
atx = 1 Visually estimate the slope of this tangent. Use
your first derivative option to verify that the slope of
this line is —+.
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Additional Problems

In each of the following, find an equation of the tangent to

the graph at the given point.

1

3.

o

y=4—-2x2at(2,0) 2. a

y="Vx—2at(2,0)

y = x%3at (0,0)

y=x_ 1at(2,2)
4. y=Vaxat(0,0)
6. y = cos x at (1/2,0)

y = 3sinxat (0,0)

In each of the following, s is the position of a moving object

at time t. Find the velocity at the given instant.

8.
10.
12.

13.

14.

s=t3—tatl 9. s=4/t?at2

s =sin2tat0 11. s=tantat0

Aball is thrown straight upward. After t seconds its

height above the ground (in feet) is h = 96t — 16+

(a) Show that the velocity of the ball at time f is
o(t) = 96 — 32t.

(b) When does the ball reach its highest point and how
high does it rise?

(c) When does the ball return to the ground and what
is its velocity then?

Aball is thrown straight upward from the top of a

tower. After ¢ seconds its height above the ground

(in feet) is h = 48 + 32t — 16t2.

(a) Show that the velocity of the ball at time f is
o(t) = 32 — 32t

(b) When does the ball reach its highest point and how
high (above the ground) does it rise?

(c) When does the ball return to the top of the tower?
with what speed?

If the position of a moving object at time tis s = cos ¢,
how fast is the object moving when ¢t = 27t/3? in what
direction?

Evaluate each of the following limits. Then use an appropri-

ate definition of limit to prove that your answer is correct.

15.

17.

19.

21.

lim (16 — 9x) 16. lim (x2 — 25)
x—1 x—5

lim (8 — 3x2) 18. lim (x3 — 20)
x—-1 x—3

lim (1 — 2x9) 20. lim Vx + 8
x—0 x—0

lim (l — 5) 22. lim (cosx — l)
x—1 X x—0 2

Use properties of limits to evaluate each of the following.

23.

25.

27.

29.

30.

31.

32.

33.
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lim (x2 — 6x + 10) 24. Tim
x—1 =2 x- — 1

10 3
lim x sin — 26. lim x2 cos
x—0 X x—0
fim =5 28, lim ° %
—25 X — 25 x—>6’|x—6|

. 1—x2if [x| =1
1 , wh =
lim f(x), where f(x) {1+xif|x| ~1
What are the coordinates of the hole in the graph of
3 _
_x 8?
x—2

Evaluate
t

i
t—0 cot t

Is it legitimate to write
t lim ¢
cott lim cott

in this case? Explain.

Evaluate
o _xl
lim —sinx and lim —sinx
x—0" X -0 X
Does the limit as x— 0 exist?
Evaluate
. sinx + 2x
lim ———
x—0 X

In each of the following, find f'(x) by evaluating the limit of

an appropriate difference quotient.

34.

36.

38.

40.
41.

42.

43.

flx)=x2+x 35. f(x) =x2-3x
x
— 4 _ =
flx) = x* —3x 37. f(x) po—-
f(X):x;2 39. f(x) ==x*3
Fla) = x3/4
Use the definition of derivative to show that if f(x) =

3x — x3 then f'(x) = 3(1 — x?). Find where the graph of
fis rising and where it is falling and sketch it.

Use the definition of derivative to show thatif f(x) =
x% — 12x, then f'(x) = 3(x2 — 4). Find where the graph
of fis rising and falling and sketch it.

Use the interpretation of derivative as slope to explain

why the derivative of y = Va? — x%is

dy  —x
dx az — xz

Where is the function f(x) = Va? — x? differentiable?
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44.

45.

If f(x) = cos x, evaluate

lim L = f©)

x—0 X
by making use of the definition of derivative.

If f(x) = sin x, evaluate

lim f(x)— f(m)

X1 X — T

by making use of the definition of derivative.

In each of the following, find f'(t).

46. f(t) =sintcsct 47. f(t) = costsect
48. f(t) =sin(—t) 49. f(t) = cos (—t)
50. f(t) =sin (t + ) 51. f(t) = cos (m—1t)

52. If f(t) = sin 2t, show that f'(t) = 2 cos 2t.

53. If f(t)= cos 2t, show that f'(t) = —2sin 2¢.





