CHAPTER 10

Techniques of
Integration

Common integration is only the memory of differentiation.
AUGUSTUS DE MORGAN (1806-1871)

Mathematicians are like Frenchmen: whatever you say to them they
translate into their own language, and forthwith it is something
entirely different.

JOHANN WOLFGANG VON GOETHE (1749-1832)

One should not use an elephant gun to shoot a mouse.
ANONYMOUS

COMPUTER CALCULUS: INTEGRATING WITH TECHNOLOGY

In this chapter you will learn a variety of techniques for evaluating inte-
grals. Many of these techniques are quite ingenious, demonstrating the
power of calculus problems to stimulate critical thinking. It would be a sad
day when mathematics professors stopped teaching students how to do
these problems with pencil and paper. (For an imaginative picture of a
future when people have forgotten that it is even possible to “do math in
your head,” read Isaac Asimov’s famous 1957 short story “The Feeling of
Power,” copyrighted by the Quinn Publishing Co., Inc.)

However, it is not sad at all to have access to powerful software like
Maple or Mathematica. These CAS (computer algebra systems) can yield

results for integrals which would be tedious, and not necessarily instructive,

451



452  CuaPTER 10 m Techniques of Integration

to do by hand. It is also important to remember that many integrals are far
from elementary. It is good to have computers!

Problem 11 in Problem Set 10.2 asks you to find the integral f sin® x dx.
You can accomplish this by cleverly rewriting the sine cubed as a product,
using a Pythagorean identity to introduce cosine, then using a substitution.
This will yield the answer given in the Answers section at the back of the
book. Maple yields an answer that looks different.

Input the following syntax:

int((sin(x)"3,x);
The output is
—1/3sin(x)"2 cos(x) — 2/3 cos(x),  which we might write as
—Lsin2xcosx — 2 cos x
3 3

Can you use trigonometric identities to show that this result is the same
as the answer we found? Can you see why it may be unwise to leave mathe-
matics strictly to the computers and fail to gain an understanding and

appreciation of it ourselves? Read the story!
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HIS CHAPTER IS devoted to what might be called the art of integration. We say
Tart (rather than science) because it is hard to say anything very systematic
about the methods used to tackle a given integral. Differentiation is straightfor-
ward; antidifferentiation often requires some imagination.

There are really only two general approaches to integration (although it may
not look that way to the beginner). One is to make a substitution that reduces the
integral to a familiar standard form; the other is integration by parts (the first topic
of this chapter). From your experience with substitution in the last four chapters,
you are undoubtedly aware of the central problem. It is essential to perceive the stan-
dard form lurking behind an integral in order to know what substitution to try. That is
why we have been collecting integration formulas as though they were rare jewels.

You will find a list of previously derived results on the inside back cover of the
book; they will be needed from here on out. Whether they should be memorized (in
whole or in part) is a question we prefer to leave open. One can certainly argue that
they need not be, on the grounds that we can always look them up. On the other
hand, how do we recognize a good substitution if we are ignorant of the standard
forms? It is no accident that most students who master the art of integration seem to
know these formulas pretty well (whether required to learn them or not).

You will also find a list of hyperbolic integrals on the inside back cover (not
given before) that are analogous to familiar trigonometric formulas. While they are
not so often used, they are worth listing for reference (and are easily checked). Two
of them (the integrals of sech and csch) are surprising; you might enjoy figuring
out how they are obtained.

Although this list is a good start on a table of integrals, you should realize that
no table is adequate for all integration problems. A simple example is

1
j e Pdx =7
0

No elementary function exists whose derivative is e~ in such a case it is neces-
sary to resort to approximation techniques. We will take up that question at the
end of the chapter.

10.1 Integration by Parts

The Product Rule for derivatives says that if u and v are functions of x, then

d 0 do, du
%(uv)—udx+dxv

or (in differential form)
d(uv) =udv +vdu

Integrating both sides of this equation, we have uv = f udo + fv du, from which

Judv= uv — Jvdu



454

CHAPTER 10 ® Techniques of Integration

This innocent-looking formula is the source of a powerful method of integration
known as integration by parts. A few examples will indicate how useful it is.

m Example 1
Find Jxex dx.

Solution

We think of the integrand xe* dx as having two “parts,” naming one part « and the
other dv. This may be done in many ways, one of which is u = x and dv = e~ dx.
Calculating

du = dx and v= J eXdx = e* (arbitrary constant omitted)
we find
Jxe"dx= Judv=uv— Jvdu=xe"— Je"dx=xe"—e"+c

Another choice of parts in this problem is u = ¢* and dv = x dx, from which
du = e*dx and v = x2/2. The parts formula gives

1 1
f xe*dx = Exze" ~5 szex dx

While this is certainly correct, it is not going anywhere. The new integral (on the
right side) is harder than the original one. This illustrates the fact that integration
by parts is not a routine procedure; it requires some judgment (based on experi-
ence) of what choices of # and dv are good ones. [ |

Remark

It is worth noting that once u is chosen in the method of integration by parts, the choice of
dv is automatic. Thus in Example 1 we chose u = x; then we had no choice but to write
dv = e* dx. The calculation of du = dx (by differentiation of u = x) and of v = e* (by integra-
tion of dv = e* dx) is also automatic. In view of these facts the choice of u is clearly crucial.

There are two critical considerations to keep in mind when this choice is made:
1. We must be able to evaluate f dv (to obtain v from dv).

2. The new integral f v du must be easier to evaluate than the original integral f u do. (See
Example 7 for an exception to this statement, however.)

m Example 2

You may have already encountered the formula

J Inxdx=xInx—x+C (Additional Problem 17, Chapter 8)
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To see where it comes from, let # = In x and dv = dx. Then du = dx/x and v = x, from
which

Jlnxdx=uv—Jvdu=xlnx—de=xlnx—x+C [ |

m Example 3
To find f sin~! x dx (Problem 35, Section 9.2), let u = sin~! x and dv = dx. Then

d
du = 7362 and V=X
1—x
from which

x dx
V1 — x?
The new integral may be found by making a substitution, namely u = 1 — x?,
du= —2x dx. Thus

d 1 1 —
ijz= - Ju”zdu= - ut2=—\/1 — 2
V1 - x

J sin'xdx=xsin"'x — J

and we find

Jsinlxdx=xsin1x+ V1-x2+C [

Remark
The letter 1 occurs in Example 3 with different meanings. Such repetition is convenient (if the
earlier u is no longer part of the problem), but of course it should not be done if there is any

danger of confusion.

m Example 4
To find
/2
J x2sin x dx
0
let u = x?and dv = sin x dx. Then du = 2x dx and v = —cos x, from which

szsinxdxz —xzcosx+2J’xcosxdx

While the problem is not solved, the new integral is simpler than the original one;
we find it by using integration by parts again:

u=x,dv=cosxdx (hence du = dx, v = sin x)

Then

chosxdx=xsinx— Jsinxdx=xsinx+cosx
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The original integral is

/2 /2
j x2sinxdx = (—x2cosx + 2xsinx +2cosx) | =m—2 [ |
0 0

Repeated integration by parts (as in Example 4) occurs so often that it is worth-
while to develop a formula for it. Suppose that we want to find

J flx)g(x)dx

where f is a polynomial of degree n and g is a function that can be integrated
repeatedly. Letting

u = f(x) and dv=g(x)dx

we have du = f'(x) dx and v = G,(x) (where G, is an antiderivative of g). The parts
formula gives

J f(x)g(x) dx = f(x)G,(x) — J f'(x)G,(x) dx

Since fis a polynomial, so is ', and its degree is one less than the degree of f. Thus
the new integral may be expected to be simpler than the original one (assuming
that G, is no harder to integrate than g). Use the parts formula again, this time with

u=f'(x) and dv = G,(x) dx

Then du = f"(x) dx and v = G,(x) (where G, is an antiderivative of G,). This gives

j fx)g(x)dx = f(x)G,(x) — [f "(x)G,(x) — J " (x)G,(x) dX]

~ G0 =/ WG,0 + | (G0
We will carry out one more step to clarify the general pattern. Let
u=f"(x) and dv = G,(x) dx
Then du = f" (x) dx and v = G,(x) (Where G, is an antiderivative of G,), and we have
| 1050 v = 016,00 - 0G0+ £ (06,0 - | 7 @I 0
This process stops in n steps (when the polynomial has been differentiated
down to a constant). Hence the formula we are seeking reads as follows.
Repeated Integration by Parts
j fg=1G, — F'G,+ "G, — "G, + ...+ (=1)'f"G . +C

where fis a polynomial of degree nand G,, G,, . . ., G, , are successive antiderivatives
of g.
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m Example5

Use the formula for repeated integration by parts to confirm the result in Example 4.

Solution

With f(x) = x?and g(x) = sin x, our formula reads

J x2sin x dx = (x2)(—cos x) — (2x)(—sin x) + (2)(cos x) + C
= —x2cosx +2xsinx +2cosx + C
As you can see, this is the same antiderivative we found in Example 4. [ |
m Example 6

Find fx“ezx dx.

Solution

This would take a while using the ordinary parts formula repeatedly. The repeated
integration by parts formula, however, reduces it to an easy problem:

J xtedx = (x*)(3e%) — (4x3)(5 e®) + (12x2)(5e%) — (24x)(fse%) + (24)(55 %) + C

=Te>(2x* —4x3+ 6x2— 6x +3)+ C [ |

m Example7
To find f e* cos x dx, let

u=e" and dv = cos x dx

Then du = e* dx and v = sin x, from which
J e*cosxdx =e¥sinx — J e*sin x dx

In the new integral let
u =e*and dv = sin x dx (hence du = e*dx and v = —cos x)

This gives

Jexcosxdx =e*sinx — (—excosx + J e"cosxdx)

=e¥sinx + e*cosx — Je"cosxdx

While it may appear that we are going in circles, in fact we are not. Simply solve
for the original integral to obtain

2 J e*cosxdx =e¥sinx + e* cos x (arbitrary constant omitted)

Jexcosxdx =1e*(sinx + cosx) + C [ ]
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m Example 8

Derive a “reduction formula” for f sin” x dx (where n is a positive integer greater
than 1).

Solution

Letu = sin” ~!x and dv = sin x dx. Then
du=m—1)sin"~2x cos x dx and V= —COS X

from which
J sin” xdx = —sin” 'xcosx + (n — 1) J sin” =2 x cos? x dx
Replacing cos?x by 1 — sin?x in the new integral, we have

Jsin”xde —sin”‘lxcosx-i—(n—l)fsin”‘zxdx—(n— 1) J sin” x dx

from which
n J sin"xdx = —sin” " 1xcosx + (n — 1) J sin” ~2x dx
Hence
Jsin”xde_Sinn;xcosx+n;1jsin’7Zxdx (n>1) [ |

A special case of this result is worth recording for future use, along with a sim-
ilar formula we ask you to derive in the problem set:

If nis a positive integer greater than 1, then

/2 n /2
J sin"xdx:if sin” =2 x dx
0 n 0

/2 n /2
J cos"xdx=7j cos” ~ 2 x dx
0 n 0

For example, when n = 6 we have

/2 5 /2
J’ sin®xdx =— J sin* x dx
0 0

5 3 /2
=<1 J sin?x dx (using the formula with n = 4)
0
5 3 1 /2
=512 L dx (using it again with n = 2)
531 57
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Problem Set 10.1 32. The region under the curvey = e 2,0 =x <1, is

rotated about the y axis. Find the volume generated.
Find a formula for each of the following antiderivatives.
33. Find the centroid of the region under the curve

1. Jxez"dx 2. J(S—x)eSxdx y=cosx, 0=x=m/2

34. Find the centroid of the region under the curve y = ¢,

X sin x dx 4. | xcos2xdx 0=x=1.

Use the formula for repeated integration by parts to find

5. Jx x — 1dx 6.Jx 2 — x dx
each of the following.

7. J x Inx dx 8. J In (x2+1)dx 35. J x%e ¥ dx 36. J x3e? dx

9. J x2e™ dx 10. J x2e® dx 37. J (x2+ 1) sinx dx 38. J (1 — x2) cos x dx
11. in (1 12. In x2

J sin (In x) dx J cos (In x7) dx 39. J 3(x — 1)*dx 40. J (x — 2)2(x + 2)% dx
L -1
13. J sinh™' x dx 14. J xtan~'x dx 41, Show thatifb # 0,
s e™(a sin bx — b cos bx)
15. J sin x sin 3x dx 16. J cos 2x cos 3x dx e™ sin bx dx = 2102 C
Whatif b = 0 (and a # 0)?

17. J sec®x dx Hint: Let u = sec x and dv = sec?x dx.

42. Show thatifb # 0,

Then replace tan?x by sec?x — 1 in the new integral. e (b sin bx + a cos bx)
je”cosbxdx= TR +C
ac+b
3
18. J csc’ x dx Whatif b = 0 (and a # 0)?
Evaluate each of the following. 43. Derive the reduction formula
1 2 . _cos" lysinx n-—1 -
19. J x(2x — 1)3dx 20. J x csc? x dx cos" x dx = » + " cos" "% x dx

0 /6

. o where 1 is a positive integer greater than 1.
21 J e7*sinx dx 22. J . cos (In x) dx 44. Use Problem 43 to explain why

0 ‘ /2 n—1 /2

n/2 2 J cos" x dx = J cos" " 2x dx
23. J' cse x dx 24. J sec™ ! x dx 0 o

/4 1

12 w6 Evaluate each of the following integrals.
25. J tanh™!x dx 26. J sin 2x cos 3x dx m/2 2
o o 45. J’ cos® x dx 46. J sin® x dx
0 0
27. Find j e sinh x dx without using integration by parts. . i
s 7
28. Find j e * cosh x dx without using integration by parts. 47. J; Sty ax 48. J; cos’ 2x dx

29. Find the area bounded by the curve y = In x, the x axis, 49. Derive the famous Wallis formulas

1-3:5---(2k—1) o

and the line x = e. /2
J sin? x dx = -
0

30. Find the area bounded by the curve y = tan™! x, the 2-4-6---(2k) 2

x axis, and the line x = 1.
M 2:4-6-(2k)
31. The region under the curve y = sinx, 0 = x = 1/2, is ; s de_1-3‘5--~(2k+ 1

rotated about the y axis. Find the volume generated.
where k is any positive integer.



460 CuaPTER 10 m Techniques of Integration

50. Itis nothard to prove that the ratio of the integrals in (b) Show that part (a) can be written in the form
Problem 49 approaches 1 as k increases. 4 16 36 64
(a) Explain why it follows that e 315 35 63 o
T 2 2 4 4 6 6 (c) Use the formula in part (b) (and a calculator) to get

2

in the sense that /2 may be approximated as
closely as desired by using sufficiently many fac-

1 33557 an idea of how fast the product converges to m

(Punch 2 times 4 divided by 3 times 16 divided by
15times 36....)

tors of this “infinite product.”

10.2 Integrals Involving Trigonometric Functions

In the next section we will discuss an important class of substitutions that have the
effect of transforming certain algebraic integrals into integrals involving trigono-
metric functions. If we can handle the latter, we are in a position to dispose of
many previously intractable problems. Our purpose in this section is to discuss the
trigonometric integrals that are most useful in this connection. They are of three
types, namely

1. J sin” x cos” x dx 2. J tan™ x sec™ x dx 3. J cot™ x csc” x dx

Rather than considering a systematic listing of cases under these three types,
we simply present examples to show you the techniques that are needed for deal-
ing with trigonometric integrals.

m Example 1

Find jsin3 x Vcos x dx.

Solution

The odd exponent (m = 3) allows us to break off sin x dx and change the remaining
even power (sin? x) to an expression involving cosine:

J sin® x Vcos x dx = J sin?x Vcos x - sin x dx

= J 1 - coszx)\/cosx - sin x dx
Now let u = cos x and du = —sin x dx to obtain
J sin®x Vcos x dx = —J' 1 — u?) Vudu = J wd2 — u'/2) dy

2 2 2 2
=Zy72 —Zy3/2 4 i 7/2 _ = 3/2 4 u
7u 3u C 7(cos x) 3(cos X) C
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m Example 2
Find 7:
j sin? t cos® L dt
2 2
0
Solution

This time the odd exponent (n = 5) suggests breaking off cos 5dt and expressing
what remains in terms of sin 5 :

T b
t t t t t
J sin?—cos’— dt = J sin? = cos*— - cos = dt
b N 2 2

T t( t )2 t
= N2 — 1 — Qin2— . — dt
L Sin 2 Sin 2 COS2

! t 1 ¢
2J u?(1 — u?)?du (u=sin,du=cos dt)
) 2 22

1
2 J (u® — 2u* + u?) du
0

_2(»17_2u5+u3) ‘_ 16 .
7 5 3/, 105
m Example 3
Find fsin2 t cos? t dt.
Solution
The even exponents suggest the multiplication formulas
sin?t = 2(1 — cos 2t) and cos?t =3(1 + cos 2t)
(See Section 1.6.) We use them to write
. 5 9 1 5 1 1 )
sintcos?tdt == | (1 —cos?2t)dt =~ | dt —= | cos?2tdt
4 4 4
In the last integral we use a multiplication formula again, in the form
cos? 2t = %(1 + cos 4t)
This yields
J sinztcoszifdt=1 j dt —1J (1 +Cos4t)dt=1j dt—lj cos 4t dt
4 8 8 8
1 1 .
=—t—— +
3 t 0 sin4t + C |
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m Example 4
Find "

[ ot
Solution

The fact that sec? t is the derivative of tan t suggests that we break off sec? ¢ dt:

sectt sec?t
J dt = J - sec? t dt

tan t tan t
The identity sec? t — tan? t = 1 enables us to write

sectt tan?t + 1
dt=| ———
tant

-sec?tdt

tant

Now let u = tan t, du = sec? t dt to obtain

4 241 1 2
JSQCtdtZJu du=f<u+>du=u+ln|u|+C
u u 2

tant
1
=§tan2t+ln|tant|+C [ |

m Example5
Find /3

J tan® t sec t dt

0
Solution

This time we break off sec t tan t dt, having in mind the derivative of sec t and
intending to express what remains in terms of sec t:

/3 /3
J tan3t sec t dt = J tan2t - sec t tan t dt
0 0
n/3
= J (sec®?t — 1) - secttan t dt
0

2
= J w2 —1)du (u = sect, du = sec ttan t dt)
1

_4 n
3

m Example 6
Find f cot* t dt.
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Solution

Use the identity csc?t — cot? t = 1 to write

fcot‘*tdtz f cot?t(csc?2t—1)dt = f cot?t - csc?tdt — f cot? t dt

= j cot?t - csc?tdt — J (csc?t — 1)dt

1
= —§c0t3t+cott+ t+C

These examples and the problem set should give you the idea. We will put the

results to work in the next section.

Problem Set 10.2

Find each of the following integrals.

/2
1. [ sin* x cos® x dx
J sin® x cos® x dx
5. [ sin* x cos? x dx
0
7.
sin? 2x dx
13. sin t cot t dt
15.

J
J
J
[

16. J tan? x sec x dx

ind
SIin- x
10. J 5 dx
COS™ X
n/d -4
sm-x
12. .
0 COos™x

14. J cos? t tan t dt

Hint: You will need the formula for f sec® x dx

(Problem 17, Section 10.1 and Example 3, Section 10.3).

17. J sect x dx
19. [ (sec* x — tan* x) dx

21. J tan x sec® x dx

t
18. J ML
sec™Xx

20. J tan* x dx

22. J tan? x sec* x dx

23.

25.

29.

31.

33.

35.

36.

37.

38.

39.

40.

n/3
J tan* t sec* t dt 24, J tan® x dx
n/4
/4

(tan x + cot x)?dx 26. sec® t dt

I

tan? x(sec x)3/2 dx

J tan® t dt 28.

a
5
o
Q
=
N
-
=
~
— [ [N

30. | cot®tdt
/4
/2 /2
J cot x csc® x dx 32. csct x dx
n/4 /4
t t
J sec* x csc* x dx 34. J €©
csc? t
/6
Work Example 3 by using the formula sin 2t =

2 sin t cos t.

The formula
J secxtanx dx = secx + C

is a standard form. Acting as though you were ignorant
of it, derive it by writing the integrand in terms of sin x
and cos x.

Derive the reduction formula

t n—1
J’ tan’ x dx = r J tan” ~ 2 x dx
n—1
Find the length of the curve y = In cos x,

—n/4=x=rm/4

Find the volume of the solid generated when the curve
y = cot?x, m/4 = x = 31/4, is rotated about the x axis.

How much surface area is generated when the cycloid
x=1—cost,y=t—sint, 0=t =2mr is rotated about
the y axis?
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10.3 Trigonometric Substitutions

Many important integration problems involve expressions of the form

a* — x? a* + x? x*—a?
where a is a (positive) constant. In such cases a trigonometric substitution is often
helpful, of the type

x=asint x =atant x =asect

respectively. To see what effect these substitutions have on the corresponding
expressions, observe that

a2 —x%2=a%?>—qa?sin?*t = a%(1 — sin®t) = a% cos? t
a2+ x2=a2+a%tan?t = a%(1 + tan?t) = a%sec?t

x%2—a%=aqa’sec’t —a?=a’(sec’t — 1) = a*tan?t

respectively. If we assume that our substitutions are invertible (that is, only
restricted trigonometric functions having inverses are used), then

Va? — x*=alcost| =acost (because —1/2 =t < 1/2)
Va? + x*>=ualsect| =asect (because —7t/2 < t < 1t/2)
Vx?—ag>=altant| =atant (because 0 <t < m/2or m=t < 3m/2)

In other words, each substitution eliminates the radical by replacing it with a
trigonometric function. This has a remarkable effect on many otherwise difficult
integrals, as you will see.

Remark

A review of Section 9.1 may be needed here. What we are saying is that the substitutions
x=asint x=atant X =asect

are equivalent to

L qX X X
t=sin " — t=tan " — t =sec " —
a a a

respectively, provided that sine, tangent, and secant are restricted as described in Section 9.1.
You may also want to look at Section 6.5 again, particularly the two substitution theorems
stated there (and Example 7). These theorems call for a “change of variable” function ¢ = h(x)
that gives the new variable in terms of the old. If the function is invertible, however, it makes

no difference, since either x or t can be expressed in terms of the other.

m Example 1

An important standard form (first stated in Problem 38, Section 9.2, but as yet
unexplained) is

al X
J Va?— xzdx=g Va’— x2+Esin‘15+ c
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To see where it comes from, make the substitution

X =asint (—m/2=t=m/2)
Then dx = a cos t dt and (as explained above) Va* — x* = a cos t. Our integral
becomes

J Va? — 22 dx = Jacost-acostdt=a2Jcosztdt

a2

5 J(l + cos 2t) dt

2
Zaz(t-l-zsinZt)—FC

a2
= > (t+sintcost)+ C (because sin 2t = 2 sin t cos t)

Since our change of variable equation (x = a sin t) is equivalent to

X
t=sin"1—
a
and since
. X Va2 — x2
sint =— and cost=——""—
a a
we find
a? X X a? — x?
J Va® — x*dx =<sin1+-—> +C
2 a a a
Cva 2+ Dsin Y c
== — —sin~1—
2 2 a
as advertised. [ |
m Example 2
To find

JS x3dx
b VO + 12
make the substitution
x=3tant (—m/2<t<m/2)

Then dx = 3 sec? t dt and

V9 + 22 =V9 + 9tan?t = 3V1 + tan®t = 3Vsec? t

=3sect (—m/2<t<m/2)

Sincex =0=t=0andx =3 = t = /4 (why?), we find

V9 + 2

f x3dx J’M 27 tan3t - 3 sec?t dt
) b 3sect

/4
=27 J sec t tan3 t dt
0
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At this point we are faced with a new problem (not necessarily easier than the
original one, but let's hope for the best). The appearance of secant and tangent
together in the integrand is a good sign because we know an identity (sec? t — tan?
= 1) and several differentiation and integration formulas involving these functions.

You may have to stare at the problem for a while to see what to do. Let’s break
off a tangent (to go with secant) and see what happens:

JsecttarﬁtdtZ Jtanzﬁsecttantdt

The idea behind this move is that sec t tan t is the derivative of sec t; if we can
express the rest of the integrand in terms of sec f, the substitution

u=sect du = secttant dt

will do the trick. To this end, write tan? t = sec?t — 1. Then
J secttan® tdt = J (sec’t —1)secttantdt = J (u?—1)du

Now it is easy to finish:
3 3 /4
x3dx
=27j sec t tan® t dt
L V9 + x? A
V2 T
=27J (u?—1)du (t=0:>u=1andt=Z:>u=\/2)
1
u3
—o7 (%L _
<3 ”)

=9[V2(2-3)—(1-3)]=92 - V2) m

V2
=9u(u? — 3)

V2

1 1

Remark

There is an easier way to do Example 2, based on the substitution u = V9 + x% (See the
problem set.) Trigonometric substitution is an important technique of integration, but it is
not guaranteed to give the quickest results in all cases that appear to call for it.

m Example 3

Find a formula for J Vx? — a?dx.

Solution
Let
X =asect O=t<m/2orm=t<3m/2)

Then dx = a sec  tan t dt and (as already explained) Vx* — 42 = a tan t. Our inte-
gral becomes
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J Va2 — a?dx = Ja’fant-asect‘cantdt=a2 J sec f tan? t dt

The device used in Example 2 (breaking off sec t tan t in the hope of expressing
the rest of the integrand in terms of sec t) does not work this time. (Why?) Instead

we write
J secttan?tdt = J’ sect(sec?t —1)dt = j sec® t dt — J sec t dt

The second integral on the right appears as a standard form in our table of inte-
grals. The first is not easy, but it can be handled by integration by parts. In fact it
has already appeared in Problem 17 of Section 10.1, the result of which is suffi-
ciently useful to be recorded:

1 1
Jsecsxdx=§secxtanx+§|n|secx+tanx| +C

Using these results, we find

1 1
JsecttanztdtZzsecttant—i-zln|sect+tant| —In|sect+ tant| + C

1 1
=§secttant—§ln|sect+tant| +C

1T x Ve2—a2 1 |x Vi2—g
=—.=- —=In |-+ +C

2 a a a a

X 3 > 1 x+ Vx2—a?
=—Vx*—a"—~ln +C

2a 2 a
=i\/x2—a2—lln|x+\/x2—a2|+1lna+C

24 2 2

The constant }In @ may be dropped. (Why?) Hence the original integral is

X a’
J Vx2— azdx=§ Vx2— a2—Eln |x+ Vx?— a2| +C

We leave it to you (in the problem set) to derive the companion formula

X a2
J Vx2+ azdx=§ S a2+EIn(x+ Vi e) 4 ©

m Example 4
The semicircular region R = {(x,y): x> + y*> = a? y = 0} is covered by a thin material
whose density at (x,y) is 0 (x,y) = y. Find the center of mass of the material.
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y
©,a) X2+ y?=2a°
/—\«(yz 0)
X
Ay/ (x.y)
(—a,0) @0 x

Figure1 Center of mass by

horizontal strips

Solution

See Figure 1, in which we have used a horizontal strip as the element of area
(because the density is essentially constant in such a strip if it is thin). The mass of
the strip is

Am=0O6AA=y-2x Ay = 2xy Ay

so the mass of the material covering R is

m=Jdm=2J y Va* — y*dy
0

0
:_J ul’2 dy (u=a*—y? du = —2ydy)

uZ

2.,
0 3

:gu?)/Z

3

The moment of the strip relative to the x axis is

AM =y Am = 2xy*Ay
so the total moment is

M =2 j VA oy
0
This integral calls for the trigonometric substitution
y=asint (—m/2=t=m/2)

Since dy = a cos t dt and

Va® - y? = Va® — a’sin’t = a cos t

we find
/2 /2
M =2 J 1125in2t-acost~acostdt=2a4j sin? t cos? t dt
0 0

The device to be used at this point is not obvious, but you can see how it
works. We use the identity

sin 2t = 2 sin t cos ¢ (from which sin? t cos? t = ;sin? 2t)
to write
114 n/2
M =— J sin? 2t dt
X 2 )
Then the identity
sin?t = %(1 — cos 2t) (with f replaced by 2t)
yields
4 /2 4 1 /2 4
Mx=az L a- cos4t)dt=%(t —4sin4t) . =%
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The y coordinate of the center of mass is therefore

=M _ma? 3 _3
Y= =8 24 16

The x coordinate is 0 because of the symmetry of the region. (Note that this is unaf-
fected by the variable density, since 6 = y. The mass is distributed symmetrically
about the y axis.) Thus the center of mass is

(x,y) = (0,75 7a) m

m Example5

To compute
6
J dx
, *V4 + x?
make the substitution
x=2tant (—m/2<t<m/2)
Then dx = 2sec? t dt and

V4 +x2=\V4 + 4tan’t =2 sect

from which

J dx _J 2sec?tdt _1Jsectdt
2V4 + 12 4tan’t - 2sect 4] tan’t

Since there is no obvious way to work this out in terms of secant and tangent,
we change to sine and cosine:

J dx _1J cos t dt
xz V4 + x2 4 Sinzt

1(d
=4J£ (u =sint, du = cos t dt)
1 1 . .
= 1 ul= 1 csc t (arbitrary constant omitted)

At this point we have two options. One is to change limits and write

tan~13

= i [\/2 — csc (tan™13)]

6
J a1
, V4 + x? 4

while the other is to return to the original variable (expressing —jcsc t in terms

/4

of x).
The first option requires us to find csc (tan~! 3). Letting 0 = tan™! 3 (from which
tan O = 3), we observe from Figure 2 that
V10
3

csc (tan™13) = csc O =

Hence

a1 V10\ 1
J ﬁx2_4(w_3)_u<m_vro>

J10

o

3
Figure2 Finding csc (tan™! 3)
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The second option requires that we find csc t in terms of x = 2 tan t. Using Fig-
ure 3, we observe that csc t = V4 + x2/x. Hence

1 V4t

Va4 + X

6

J6dx__1csct 1
2x2v4+x2 4 x=2 4 X 2 4
2

Figure 3 Finding csc t 1 V10 1
=(\/ ——)z—(sxf - V10)
4 3 12
as before.
As you can see, there is not much to choose between these options. Note, how-

ever, the usefulness of the triangles. Drawing such figures is often helpful in prob-

lems involving trigonometric substitutions. |
a va’+ x? X
Jx2 — a2
X X
Ja?—x? a a
x=asint x=atant x=asect

Figure 4 Triangles for trigonometric substitutions

Triangles that may be used in connection with our three trigonometric substitu-
tions are shown in Figure 4. Because of our choice of domain for each (invertible)
trigonometric function, these triangles apply when x < 0 as well as x > 0. They are
drawn for the case 0 < t < m/2 (t is an acute angle), in which case x is positive.

Consider the third one, however, in the case < t < 37/2 (the other part of the
t range of sec™!). The proper way to draw it is shown in Figure 5. The legs are
_a( N directed distances (both negative in this case), while the hypotenuse, as always, is
¥ -a an ordinary positive distance (because x < 0). These precautions are unnecessary,
- however, because the other functions come out just as they do in the acute case:
. ~Vx2—a2 Val-g?
Figure 5 Triangle for x = sint = . = N
asect(m<t<3m/2)
—a _a
cost=——=-—
-Xx X
~Vx2—a2 Val-g?
tant = =
—a a

and so on.

It is worth noting that these trouble-free triangles are no accident! They are a
consequence of our choice of domains in Section 9.1 (particularly in the case of
sec”!, which as we noted at the time is not always defined the same way).



SECTION 10.3 ® Trigonometric Substitutions 471

Problem Set 10.3

Find a formula for each of the following.

1.

S

-

©

9.

11.

J dx ZJ x2dx
¥2V4 — x? "l V25— &2

\/+2
J'%dx Hi tJ

sum of manageable integrals by using sec? f = tan? f + 1.

dx
J' Va2 -1
sz V4 — x2dx

1— x2)3/2

(1+ 3(2)3/2 dx

e
e
J\A—sz
N

x2dx 10 J’ x*dx
V9 + x? . V1 — x?
stin’lxdx 12. stinhflxdx

Evaluate each of the following.

13.

15.

17.

18.

19.

J' Txdx 14. J x2V9 — x2dx
> 0

r 2 dx 16 JI x*dx
o Va+ NG

r’ dx
b x*V16 — x

Hint: J cscttdt = J (cot?t + 1) csc? t dt

T dx
x

r\/l + 4x?
1

x dx
x4+ 9
in two ways, as follows.

Find J

(a) Make an appropriate algebraic substitution.
(b) Make a trigonometric substitution.

(c) Reconcile the results.

dt can be written as a

Hint: J cos®tdt = J (1 — sin?t) cos t dt

dx Hint: Jcotztdt = J (csc2t — 1) dt

20. Find
J x dx
Vx? -1
in two ways, as follows.
(a) Make an appropriate algebraic substitution.

(b) Make a trigonometric substitution.

(c) Reconcile the results.

21. Find
JS x°dx
b VO + x?
by making the substitution u = V9 + x%
Hint: u? =9 + x?and u du = x dx.
22. Find R .
4 —
J T dx
| X

in two ways, as follows.
(a) Make the substitution u = V4 — x2.

(b) Make a trigonometric substitution.

Problems 21 and 22 raise a question. If substitution of u
for the radical works in these problems, why not in all
the earlier ones? The answer is that x dx is called for in
the integrand; only if there is an odd power of x already
present (becoming even when the needed x is supplied)
is the substitution effective.

23. Find the length of the parabolicarcy = 3x% 0 = x = 2.
24. Find thelength of the curvey =Inx, 1 =x =2.

25. Solve the initial value problem

%:% y=0whenx=1
Each of the following standard forms has already been
derived. Use a trigonometric substitution to confirm it.
(Note the comparative simplicity of the argument, with the
possible exception of the last formula, which requires some
manipulation.)

d
26. J'27x2=sin*]E+C
a“—x a

1 X
=—tan!'=+C
a a

a+x

+C

28. Jdix2=ln|x+ \/xz—a2| +C
a

a—Xx
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30.

J Vil + adx =2

31.

Hyperbolic substitutions work as well as trigonometric ones,

Derive the formula

2
5 x2+a2+%ln(x+ Va2 +a?)+ C
The triangles in Figure 4 are drawn for the case
0<t<m/2 when

x=uasint x=atant or x=asect
is positive. In Figure 5 we confirmed that the third one
works out when x is negative. Do the same thing with

the first and second triangles.

the techniques being much the same. The following prob-

lems suggest the possibilities (and connections with earlier

results).

32.

33.

Derive the formula

dx x
—————=sinh’1-+C
«[ Va? + x2 a
by substituting x = a sinh ¢ and using the identity
cosh? t — sinh? t = 1.
Derive the formula

dx 1 x
J' > ;=—tan =+ C
a+xt a a

by substituting x = a sinh t and using the standard
form

J sech tdt =tan"! (sinh t) + C

34.

35.

36.

Derive the formula
dx X
J ————=sin!=+C
12— 2 a
as follows.

(a) Letx = atanh t and use the identity tanh? t + sech? ¢
= 1 (together with the integral of sech) to obtain

J % =tan"! (sinht) + C
(b) Use the identity
tan~! (sinh t) = sin™! (tanh ¢t)
given in Additional Problem 45, Chapter 9.

Use the substitution x = 2 sinh ¢ to find

6
J' dx
L, V4 + x?
and compare with Example 5.

Show that if x = 2 tan™! u, then

2du 2u

. 1 — u?
sin x =
1+ u?

1+ u?

dx =

= cos x =
1+ u?

Use the substitution in Problem 36 to find the following

integrals.
/3
37. J _ A 38. J _dx
1+ cosx b 1 —sinx
d d
o
sinx + tanx tanx — sinx

10.4 Decomposition of Rational Functions
into Partial Fractions

The idea of this section is that rational functions (quotients of polynomials) can be

integrated by breaking them into simpler parts. We begin with an example that

leads to such an integration problem.

m Example 1

Suppose that the earth can support no more than 10 billion people. The Law of

Inhibited Growth is a model of the situation in which we assume that the population

x grows at a rate jointly proportional to x itself and 10 — x (the difference between x

and its upper limit, measured in billions). In other words,

dx
dt

— =kx(10 — x)

(where t is time and k is a constant)

To solve this differential equation, we separate the variables and integrate:
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dx
x(10 — x)

dx
— = =kt +
Jx(lo = Jkdt kt+C

= kdt

The integral on the left side is of the type we propose to discuss (because the inte-
grand is a rational function). The idea is to “decompose” the function into a sum of
manageable fractions (called “partial fractions”). When this has been done, the
population may be found as a function of time by carrying out the integration and
solving for x. (See the problem set. For an interesting account of research involving
such analysis, see Human Population Growth: Stability or Catastrophe? by David A.
Smith, in the September 1977 issue of Mathematics Magazine.) [ ]

In Example 1 it is not hard to see which decomposition we should try:

1 A B
=+

x(lO—x):x 10 — x

1)

where A and B are constants to be specified later. We expect such a decomposition to
work because the denominator x(10 — x) on the left side is the common denominator
of the fractions on the right. When these fractions are recombined, we should be able
to make the numerators on each side the same by an appropriate choice of A and B.

To see what this choice is, multiply each side of Equation (1) by x(10 — x),
obtaining the identity

1=A(0—x)+ Bx (2)

This equation is true for all values of x, even x = 0 and x = 10. [These values are
excluded in Equation (1), but they are legitimate in Equation (2) because both sides
are continuous.] Hence we may substitute any values of x we choose in Equation (2).
Two substitutions will enable us to evaluate the constants A and B. (Why?)

The most convenient substitutions in Equation (2) are x = 0 and x = 10,
because they cause one term or the other (on the right side) to drop out. Letting
x = 0, we find 1 = 10A (from which A = 75), while substitution of x = 10 yields
1 =10B (and hence B = %).

Thus we have discovered that

1 111
x(10 —x) 10 x 10 10 —x

and our integration problem in Example 1 is solved:

J' dx _1de+1j dx
x(10—x) 10 x 10 J 10 — x

1 1
=—Inx ——1In(10 — x) (arbitrary constant omitted)
10 10
1 X
10 10 — x

(We left out the usual absolute values because the population limitations in Exam-
ple 1 put x between 0 and 10. Hence x and 10 — x are positive.)
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The substance of this section is that any rational function can be integrated as
in the preceding example (by decomposition followed by use of standard formulas
already developed). Rather than dwelling on the theorems from algebra that jus-
tify this statement, we present a number of examples to show you what we mean.
The algebraic theory will emerge as we proceed.

m Example 2
Find
x3+ 2
J X>—x—-6 dx
Solution

The integrand is an improper rational fraction, meaning that the degree of the numer-
ator is at least as large as the degree of the denominator. In such circumstances, long
division reduces the fraction to the sum of a polynomial and a proper fraction:
X+ 2 7x + 8

S =@t )5

x*—x—6 ( ) x*—x—6
(Confirm!) Since we can certainly integrate a polynomial, our discussion of decom-
position may be confined to proper fractions.

Factoring the denominator of our proper fraction, we have

7x +8 7x + 8
¥-x—-6 (x—-3)(x+2)

If this is going to break up into a sum, the only (simple) possibility is

7x + 8 A N B
x—-3)x+2) x—3 x+2

(for reasons explained in the discussion following Example 1). Since this equation
implies that
7x+8=A(x+2)+B(x—3) forallx

we may substitute any values of x that seem convenient. Putting x = 3, we find
29 =5A (or A= %), whilex = —2 gives —6 = —5B (or B = %). Thus

7x + 8 _29 1 +§. 1
x—-3)x+2) 5 x—-3 5 x+2
and hence
3+ 2 29 dx 6 dx
————dx = +1)dx +— + =
sz—x—6x J(x ) dx SJx—?) 5fx+2
1 29 6
=§x2+x+€ln|x—3|+gln|x+2|+C |
Remark
The substitution of x = 3 and x = —2 in Example 2 bypasses a longer method that is some-

times needed. The identity
7x+8=A(x+2)+ B(x — 3)
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can be written in the form
7x +8=(A+ B)x + (2A — 3B)

Equal polynomials have equal coefficients (of corresponding terms), which implies in this
case that

A+B=7 and 2A—-3B=38

This is a system of linear equations in A and B, yielding A = % and B = % (as you can check).
However, you should avoid this approach (or at least cut it down) whenever the substitution
of special values of x promises to yield one or more of the unknown constants.

Example 2 works out nicely because the denominator x? — x — 6 is easily fac-
tored into (x — 3)(x + 2). All the examples and problems in this section are chosen
to avoid difficult factoring, but nevertheless you should be aware of a general the-
orem about the question. It is proved in algebra that any polynomial with real coeffi-
cients can be expressed as a product of real factors of degree no higher than 2. For
example,

x2—x—6=(x—3)(x+2)
(a product of linear factors alone), while

xt—16=(x2—4)(x2+4) = (x — 2)(x + 2)(x2 +4)

(a product of both linear and quadratic factors). The point of this theorem (in the
present context) is that the denominator of any rational function we encounter may
always be factored this way. The quadratic factors (if any) are understood to be irre-
ducible (that is, they cannot be factored further using real coefficients). For example,
x? — 4is reducible because it factors into (x — 2)(x + 2), but x? + 4 is irreducible.

m Example 3
Find
x+5
J x% = 2x* + «x ax
Solution

The integrand is already proper, so we factor its denominator:
x3—2x2+x=x(x?>—2x+ 1) = x(x — 1)

Thus the problem is to decompose

x+5
x(x — 1)?
It is not so obvious this time what form the decomposition should take. A little
thought, however, should convince you that partial fractions of the type

A B C

x  x-—1 (x — 1)2
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may all be involved in a sum that gives back the original fraction when its terms
are recombined. Moreover, no other fractions need be involved. Hence our decom-
position has the form

x+5 A B C
s + 2
x(x — 1) x x—1 (x—-1)

Since the least common denominator of the fractions on the right side is x(x — 1)?,
we arrive at the equation

x+5=A(x—12%+Bx(x—1)+ Cx for all x

The useful special values of x this time are x = 0 and x = 1, yielding A = 5 and
C = 6 (respectively) when they are substituted. To find B, rewrite the identity in the
form
x+5=A(x*-2x +1) + B(x?>—x) + Cx
=(A+Bx2+(-2A-B+Cx+ A

and equate the coefficients of x> on each side:
0=A+B (from which B = —5because A = 5)

(In reasonably simple cases, like this one, you can probably put down 0 = A + B by
inspection without rewriting the identity.)
Thus we have found the decomposition

x+5 5 5 6

x(x—l)zzx x—1 (x—1)?

and our integral is

x+5 dx dx dx
- = — - + .
Jx3—2x2+xdx SJx 5Jx—l 6J(x—l)2

6
=5In|x| =5In|lx—1| ———+C
x—1

=5In +C [ ]

x‘_6

x—1 x—1

Examples 2 and 3 suggest what happens in general when the denominator of

our fraction involves linear factors:
e A linear factor ax + b that occurs only once calls for a term of the form
A/(ax + b) in the decomposition.
e Arepeated linear factor, say (ax + b)t, calls for a sum of terms of the form

Al + A2 + +L
ax +b  (ax +b)? 7 (ax + b)F

(The second statement includes the first as a special case by taking k = 1.)

Now we turn to problems in which (irreducible) quadratic factors are allowed
as well.
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m Example 4
Find
x2—x+5
J x(x2+ 1) dx
Solution

The integrand is proper and the denominator is factored, so the preliminaries are
already out of the way. The decomposition takes the form

x>*-x+5 A Bx+C
x(x2+1) x  x*+1

Note the linear (not constant) numerator in the second fraction. If we wrote only

A C

+2
x x*+1

Bx )
¥ +1

we would not be putting down all the fractions that might contribute.

(Ieaving out

Using the least common denominator as before, we find
X2 —x+5=AK%2+1)+xBx + C) for all x

The only special value of x of any interest this time is x = 0, substitution of which
gives A = 5. That leaves two unknowns; we need two equations to determine their
values. Hence we equate coefficients of both x? and x:

1=A+B and —-1=C
Since A = 5, we find B = —4 and our decomposition reads

x*—x+5 5 (-4-1) 5 4x 1

x(x2+1) «x 2+ 1 x x2+1 x2+1

The integral is

x2—x+5 dx x dx dx
jx(x2+1) dx_SJx_4jx2+1_Jx2+l

=5In|x| —2In(x?+1)—tan 'x + C

m Example 5
Find
j 2x2 + x + 7dx
(x% + 4)?
Solution

The repeated quadratic factor calls for a decomposition of the form

22+ x+7 Ax+B Cx+D
= +
(x% + 4)? X244 (P +4)?

(as in the linear case). We find

2x2+x+7=(x%2+4)(Ax + B) + (Cx + D)
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No special value of x is of any help this time, so we equate coefficients of corre-
sponding powers of x.
x3:0=A x%:2=B8B x:1=4A+C x%:7=4B+ D
Using the values A = 0 and B = 2 in the last two equations, we find C = 1 and
D = —1. Our decomposition is
2x2+x+7 2 N x—1 2 N x B 1
(*+4) 24 (P4 44 (P4 (P +4)?
and our integral is
J'2x2+x+7dx_2f dx +J x dx _J dx
(x% + 4)? x2+ 4 (x* + 4)2 (x* + 4)2
=tan"!- — L
2 20+ 4)
The question mark is inserted because the third integral is not easy enough to put
down by inspection. (We hope the first two are!) Make the substitution
x=2tant (—m/2<t<m/2)
in this integral. Then dx = 2 sec? t dt and (x2 + 4)? = 16 sec* t, from which
dx 2sectdt 1 1
= = 2¢dt=— | (1+ cos2t)dt
J(x2+4)2 j 16sectt SJCOS 16J( cos 20)
1<t+1' Zt) 1(t+' t t)
=— —sin2t) = — in
16\ 2° 16 TS
=— (tarl1 I, = 2 )
X +4 16 2 V244 Vai+4
X
t =—tan! Ty X (arbitrary constant omitted)
- 16 2 802+ 4)
Figure1 Finding sin t and (See Figure 1.) Hence the original integral is
t
- jwdx_tanlhl_ltanlx_xw
(x* + 4y 2 2(x*+4) 16 2 8(x*+4)
15 X x+4
=—tan'>—- ——F5——+C n
16 27 8+ 4)

Examples 4 and 5 indicate that the rule for (irreducible) quadratic factors is the
same as for linear factors, except that the numerators are linear instead of constant.
None of these statements, incidentally, has been proved! We are relying on your
intuition of what a reasonable decomposition should look like.

m Example 6
Find
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Solution
Since x® — 1 = (x — 1)(x% + x + 1) (the second factor being irreducible), we write

1 A Bx + C
+
-1 x—-1 x*+x+1

We leave it to you to confirm that A =%, B = —1, C = —3. Hence

J dx 1J dx _1J(x+2)dx_1
3

x3—1:§ x—1 P2+x+1 3

1
Inlx—1] ==
nlx — 1| 3()

To find

J(x+2)dx
XX+ x+1

letu =x2+ x + 1, du = (2x + 1) dx. Since the numerator is x + 2 (when we would
like it to be 2x + 1), we fix it up by writing

1 3
+2="Qx+1)+2
X 2(x ) 5

Then

J(x+2)dx:1J(2x+l)dx+3j dx
2

4+ x+1 PH+x+1 2)xP+x+1

1 J du 3 J dx
== | =+ | 55—
2)u 2)/x+x+1
The first integral on the right is a logarithm. The second is an inverse tangent, as
you can see by completing the square in the denominator:
X2+x+1=0@2+x+)+i=(x+3)12+3

This prepares us for integration using the standard form

j ax =1tan’1E+C

a>+x* a a
Hence
J<x+2)dx_1jdu+3 e
x4+l 2] u 2 (x+)+3
_11n|u|+3.1tanl<x+1/2>
2 2 V32 V312
1 2x + 1
=ln(x2+x+1)+\/?;tan1< )
2 V3
Thus
3 3
1 1 2x + 1
j 3dx =[1n|x—1|—ln(x2+x+1)—ﬁtan‘1(x )]
L’ =1 |3 6 3 \/3 )

S () e ()

2ttty - Lann
—31'1 61'1 61'1 3 an

~(0.075 (from a calculator) [ |
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Problem Set 10.4

Use the methods of this section to find each of the following

1 J dx ) J x dx
Tl x*+2x -3 Tl xP—-5x+6
x2+1 (x — 3) dx
x(x2—1) * Jx(x2+x—2)
5 dx Jx3+1 i
) x(x —1)? x2(x — 1)
dx J x2dx
7. —_— —_—
x—1DE*+1)

dx Hint: See the third quotation at the

8
g beginning of this chapter.
dx x3dx
10. .
xt—1 J (x2+1)2
x>—-x+1 dx
12. d 13.
2+ 42 ,[x3—8
14. J dx
x3—27
Evaluate each of the following
2
dx
15. - 16. dx
Jlxs(x-i-Z) Jx-l—x—ZO
3
dx
17. - 1
Lx3(x2—2x+1) 5 J x+4)2
1
dx
19. 2
? L x3+1 0 ,[J x>+ 8
© x
21. J 3 dx 22. J x3tan™! x dx
X —8 b
n/4
d
23. J L Hint: Let u = tan x.
, tanx +1
24. To find
x3+1
J x(x2+ 1) dx
suppose we write
¥+1 A Bx+C
x(x2+1) x  x*+1
(a) Show that thisimpliesA=1,B = —1,C = 0 and
hence
e+l 1 x
x(x2+1) x x2+1

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

(b) When x =1 the “identity” in part (a) yields 1 = 3.
What went wrong?

(c) Find the integral.

J dx
(x* +1)?
suppose we write
1 _Ax+B
x2+ 1) x*+1

To find

Cx +D
(x> + 1)

(a) What is the result and how could it have been fore-
seen?

(b) Find the integral.

J dx
x(10 — x)

by completing the square in the denominator and

Find

using a standard integration formula. (Assume that
0 < x <10, as in the opening example of this section.)

Find

J dx
x2+2x — 3

by completing the square. (Compare with Problem 1.)

Use the ideas of this section to derive the standard
form
dx 1 a+x
=1 +C
Jaz—x2 22 " la—x
Derive the formula
dx 1 x
| +C
Jx(ux-i—b) b 1 ax-i—b‘
Derive the formula
J dx 1 lnax+b‘+c
x%(ax + b) bx = b?
Derive the formula
X 1 b
— +b| + +
J(ax+b)2d (lnlax bl +b) C

Find the area of the region bounded by the curve
=(x2—1)/(x2+ 1) and the x axis.

Find the centroid of the region in Problem 32.

Find the area of the region bounded by the curves
y=x2%/(x*—16), x = 1, and the x axis.

Find the centroid of the region bounded by the curves
y=x/(x?+ 1), x = 2, and the x axis.



SECTION 104 ® Decomposition of Rational Functions into Partial Fractions 481

36.

37.

38.

39.

Find the volume of the solid generated when the
region bounded by the curves y = (x — 2)/[x(x — 4)],
x =1, and the x axis is rotated about the x axis.

The Law of Mass Action in chemistry leads to the differ-
ential equation

d

o= ka =) -)

where x is the amount at time f of a substance being

(k,a,b>0)

formed from the reaction of two others (x = 0 at t = 0).
(a) Assuming thata # b, solve this initial value prob-
lem to obtain

A7 _ 0 a-bm
b—x b°
(b) Explain why x approaches the smaller of a and b as

time goes on.

(c) Takinga =3 and b = 6, suppose that 1 gram of the
substance is formed in 10 minutes. How many
grams are present 10 minutes later?

(d) Solve the differential equation in the case a = b.

Suppose that the upper limit of world population is 10
billion and that there were 2 billion people in 1920 and
6 billion in 2000.

(a) Use the Law of Inhibited Growth to show that the
population ¢ years after 1920 is

10 where k =iln6

YT ek 800

What does x approach as time goes on?

(b) When will the population be 8 billion?

(c) If the Law of Exponential Growth (x = x,e®) is
used instead, when will the population be 8 bil-
lion?

Suppose that the upper limit of world population is
8 billion, and assume the Law of Inhibited Growth
(together with the statistics of 2 billion people in 1920
and 6 billion in 2000).

(a) Show that the population t years after 1920 is

8 where k =Lln3

YT 3w 320

What does x approach as time goes on?

40.

41.

42.

43.

(b) When will the population be 7 billion?

(c) If the Law of Exponential Growth (x = x,e®)
is used instead, when will the population be
7 billion?

Alaw of population growth that applies in some cir-

cumstances is

d
di; =kx +ax?  (where k and a are positive)
(a) Solve this differential equation to obtain

k
T (a+ki/xp)e ™ —a

where x, is the initial population. What would this
become if a were 0? Hint: Use Problem 29.

(b) Explain why it is unreasonable to use this model of
population growth over a long period of time.

(c) More precisely, show that the population grows
without bound in a finite time. When is doomsday?

In a town of N people a certain disease is spreading at
a rate proportional to the product of the number
already infected and the number not yet infected:

d
ﬁ=@m—w
where y is the number infected at time ¢

Find y as a function of ¢ if y = 1 when t = 0. What does
y approach as t — %?

Use the substitution x = 2 tan™! u (Problem 36, Section
10.3) to find

J dx

1+ sinx — cosx

(This substitution changes rational functions of sin x
and cos x to rational functions of u.)

Repeat Problem 42 in the case of

J dx
1+ cosx — sinx
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10.5 Miscellaneous Integration Problems

As we mentioned at the beginning of this chapter, there are only two general meth-
ods of integration. One is substitution (including many special devices not covered
in this book); the other is integration by parts. (Decomposition of rational functions
is not really a method of integration, but an algebraic technique for breaking up a
fraction into a sum.)

Nothing new is offered in this section (except for fuller explanation of some
substitutions that have previously occurred only in the problem sets). Our purpose
is to help you develop more confidence in your mastery of technique by present-
ing miscellaneous examples and problems.

m Example 1
Find
J Vx dx
xr—1
Solution

The substitution needed here was first suggested in Example 6, Section 6.5, but has
not appeared too often since. Because the radical involves a linear expression, noth-
ing so fancy as a trigonometric substitution is called for; simply let u = Vi,
u? = x,2u du = dx. Then

J \/;dx_J uudu) _ f 2u?du

-1 | ut—1 ut—1

an integral that calls for a decomposition of the type described in the last section.
We leave it to you to confirm that the integrand is

2u? 11 111
u—-—Dw+DH@w+1) 2 u—-1 2 u+l u*+1
Hence
Vxdx 1 1
szx_iczzlnht—ll—21n|u+1|+tan1u+C
1 \/92—1‘ ~
=In|——| +tan ' Vx + C m
2 Vx+1
m Example 2
Find 1
szsin‘lxdx
0
Solution

Integration by parts seems a good way to start. Let
u=sin'x and dv=x?dx

Then du = dx/ V1 — x?>and v = x3/3, from which
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3 3
. x3 . 1 x3dx
szsm1xdx=smlx—J

3 3 \/1—x2

The new integral can be handled by a trigonometric substitution. In view of
the odd power in the numerator, however (see Problems 21 and 22, Section 10.3),
we will let

u=V1-x* w2=1-x2 udu=—xdx

Then

J x3dx :J(l—uZ)(—udu)
V1 - x? u
=J(u2—1)du=u3—u=u(u2—3)
3 3

(We omitted the arbitrary constant.) The original integral is

1

u
— 5@ =3)

x2sin"lxdx =—sin"1x
b 3

In Example 2 we delayed inserting the limits of integration until the end. A funny thing hap-

pens if they are inserted early:
r1 J Y x3dx
0o V 1- xZ

1 x3
J sin"'xdx ="sin"'x
b 3 0o 3
The original integrand is continuous in [0,1], so the integral certainly exists. The new inte-

gral, however, is improper (see Problem 40, Section 9.2) because x*/ V1 — x? is unbounded
in the domain of integration. We cannot integrate from 0 to 1, but only from 0 to ¢ (where t is
close to, but less than, 1). The result is

box3dx u e N
—— =—(u?>-3) (u="V1-1x?
JO V1 — x? 3 1
2 1 5
:g—g Vl—t(2+t2)

which approaches 3 as t— 1. The improper integral may be assigned this value and all is
well. Since we have not yet formally discussed the subject, however, this approach is a little
tricky! In our first solution the difficulty evaporated when u cancelled in the step

J(l —u?)(—udu) _

u

J w?—1)du

It is easy to overlook improper integrals that arise in this way. (If you worked Problem 24 in
Section 10.1, for example, you may have sailed right by one!)

m Example 3
Find
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Solution
This becomes an inverse tangent upon substitution of # = cos x, du = —sin x dx:
" sinx dx Jl du Jl du
—_— == =2 hy?
L4+coszx 4+’ 04+u2 (why?)
1
1
= tan~! Ly tan~! = = 0.46 [ |
0 2
m Example 4
Find
J dx
1 —sinx + cosx
Solution

The integrand is a rational function of sin x and cos x, which calls for a substitution
we have mentioned only in the problem sets. (See Problems 36 through 40, Section
10.3, and Problems 42 and 43, Section 10.4.) It is not an obvious device, but one of
those clever ideas that has been around for a long time (and is worth understand-

ing). Let
2 du
x=2tan'u  dx= 5
1+u
Since tan (x/2) = u, we may use Figure 1 to find
J1+ w2
u . 5 i X X 5 u 1 2u
sinx =2sin-cos-=2"- . =
W2 22 Vi+u® Vi+u? 1+
1
. . _ooxoox 1 uz 1 —u?
Figure1 Finding sinx and COS X = COS E — sin E =1+ uz— T+ 2 1142

COos x

With these results in hand, we can write

dx 1 2du du

1 —sinx + cosx 2u +1—u2 1+u> 1—u
1+u> 1+ u?

from which

d d
J - ol J " =—-In|1—u| +C
1 —sinx + cosx 1—-u

—In

x
1—tan-| +C |
]
The substitution in Example 4 is worth emphasizing:

To find the integral of a rational function of sin xand cos x, make the substitution

2 du

x=2tan""u ax = 5
14+ u

sin x = 2u cosx—1_u2
IR R
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m Example5
Find

Solution

This appears to call for decomposition of the rational integrand. It is easier, how-
ever, to make the substitution u = x2, du = 2x dx. Then

r x dx 1[16 du 1[16 du 11 Py 10
= - = —— = ——+—CO —
Lxt—16 2) wr-16 2] 16-u? 24 4|,

1 9
=_ -1Z _ -1
3 (coth 1 coth 4)

1 4 1
=3 (‘canh‘1 g~ tanh™! 4) [because coth™! x = tanh™! (1/x)]
~0.028 (from a calculator with a tanh ™! key)
The problem can also be done in terms of logarithms:
r x dx 1[16 du 1J16 du 11
= — = — — = ——1n
Lxt =16 2] wr-16 2] 16-u® 16

1 5 1 13 1 39
= —— -+ — _— = — — = ().
161r13 16ln5 161r125 0.028 [ |

m Example 6
Find
J x dx
\/3 x +1
Solution

As in Example 1, we substitute for the radical:
u=Vx+1 w=x+1 3u?du = dx

Then

J x dx :J(u3—l)(3u2du)
\/3x+1 u
3 3 3
— 4 _ — —_ 5 _ = 2+ — — 42 3 _ +
J(Bu 3u) du 5u 2u C mu Qu3—-5)+C

3
=E(x+1)2/3(2x—3)+c u
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m Example7
Find

J xtdx
x2— 4

Make the trigonometric substitution

Solution

x=2sect O0=t<mn/2 ormt =t<3m/2)

Then dx = 2 sec ttan t dt and Vx? — 4 = V4 se®t — 4 = 2 tan ¢, from which

J xtdx _J16sec4t-23ecttantdt

Va2 — 4 2tant

Now use integration by parts, letting u = sec® t and dv = sec? t dt. Then

=16 J sec® t dt

du = 3 secdttan t dt and v=tant

from which

J sec’tdt =sec®ttant — 3 J sec® t tan? t dt
=sec®ttant — 3 J sec?t (sec?2t — 1) dt

=sec’ttant — 3 J sec®tdt +3 j sec? t dt
Solving for f sec® t dt, and recalling from Section 10.3 that
1 1 . .
secd tdt = 5 secttant + ) In|sect +tant| (arbitrary constant omitted)

we find

44 1
J” = 16(sec3ttant+3 Jsec%dt)
4 4 4

x% -

=4sec’ttant + 6secttant + 61In|sect + tant| + C

=2secttant(2sec?t+3)+ 6In |sect + tant| + C

\/2_4 2 \/2_4
:2-’2(-’(7(2-’;+3) +61In §+xT +C

1
Iix\/xz—4(x2+6)+6ln|x+ V2 — 4] +C

(We dropped the constant term —6In 2.)

m Example 8
Find

dx
J Veéx — x*
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Solution

We complete the square by writing

6x —x2=—(x2—6x+9)+9=9 — (x — 3)2

Then
J dx _ J dx
Vex — x* V9 — (x — 3)?
Problem Set 10.5
Find each of the following integrals.
1 [3 dx ) J dx
VA —x ) a2+ 8x + 20
boe¥dx
3. Jsm\fdx 4. J -
b € +1
sin x cos x cosx dx
5. 6.
L 1 — sinx J (a® — x?)¥?
- J x2dx g JM tan’x + 1
0(x «r+1)° C ), tanx +1
xt+1
% J 1+smx 10. Jx4—1dx
1
11. J 12. J Vix — x?dx
1+ secx o
1
dx
13. [ sec* x dx 14. J
0 0 2 - %
15. J' x sec x tan x dx 16. J sect t dt
_ Zd
17J S Sl 18.J3xx
b x—2x—8 x + 2
/4
sect dx
19. ——dt 20. —_—
L 1 + sec’t sz\/m
x2+ 4 !
21. J g dx 22. J x2— x*dx
0

=sin‘1<x_3)+C [ |

3

1

tdt
23. Jx3sin’1xdx 24, J f
el —1
5
dx
25. Jx3smxdx 26. Ji
1 xVx2+ 10x
d V4 — x2
27. j T 28, f%dx
Véx — x? X
3(2x—3)dx
29. 30. —_—
J Lx2—3x+5
31. Je cos 2x dx 32. J csctt dt
/4
33.
Jx — 4x

34. Find the area under the curvey = (4 + x2)/(4 — x?),

—l=x=1
35. Find the length of the curvey = x2, 0 =x = 1.

36. Find the centroid of the region under the curve
y=e,0=x=In2.

37. Find the volume of the solid generated when the region
bounded by the curves y = cos x, x = =7/2, and the x

axis is rotated about the y axis.

38. Find the surface area generated when the region under
the curvey = 1/x, 1 = x = 2, is rotated about the x axis.
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y y=1(x)

(X— 1 V=)
(X Y4

average
base

|

|

|

|
Yi-1 I Yk

|

|

1

Figure 1

X1 X X« X

altitude

Trapezoidal approxi-

mation of area under a curve

10.6 Numerical Integration

As we have pointed out before, a table of integrals (no matter how extensive) can-
not touch some problems. A simple example is

1
J Vx® + 1dx

0
which cannot be evaluated by any of the methods we have described. In fact no
elementary function exists whose derivative is Vx* + 1. Moreover, we tend to for-
get that our “evaluation” of many integrals is in name only. A result such as

1
f cosxdx =sin1l
0

has to be converted to a decimal approximation to be useful. While calculators give
the values of common functions, there are situations in which we have to do better.
In this section we develop two formulas that enable us to compute

be(x) dx

as accurately as we please (provided of course that f itself is known to within the
needed degree of precision). They are based on linear and quadratic approxima-
tion of f(x), respectively.

LetI = [a,b] and suppose that P = {x,, x,, ..., x, } is a partition of I into 1 subin-

tervals of equal length. In Figure 1 we show the graph of f in the typical subinter-
val, together with its linear approximation by a line segment joining its endpoints.
The area of the shaded trapezoid (from geometry) is

(average base)(altitude) = %(yk L, ty)Ax

To obtain an approximation of the integral of f from a to b, we need only add up
these trapezoidal areas:

b n
J flx)dx ~ 241 %(.Vk—l +y,) Ax

When this sum is written out, it becomes

1 1 1 1
Ax[2(]/0-i-yl)-I—z(y1 +y2)+...+§(yn_2+yn_l)+§ (y,_, +yn)}

1 1
=Ax(2y0+y1+y2+...+ynl +2yn)

Thus we have arrived at the following result.

The Trapezoidal Rule

Let {x,, x,, . . ., x,} be a partition of [a, b] into subintervals of equal length
Ax=(b—a)/n.If

yk:f(xk) k:0,1,...,n
then

b
1 1
J f(x) dszx(2y0+y1+ Yot . .Y, . +2yn)
a
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We do not claim to have proved anything! How could we, when no hypothe-
ses are given concerning f and no precision is imposed on the approximation? Not
until an upper bound is given for the error does the rule acquire any mathematical
substance beyond the intuitive ideas of area that lead to it. Note, however, that if f
is integrable (which of course we assume when we write its integral), the approxi-
mation does approach the right answer as 1 increases. To see why, let

1 1
Tn =Ax<2y0+y1 Ty, .oty +2yn)

1
:(y1+y2+...+yn)Ax—§(yn—yO)Ax

n

= 2 flx)Ax — % [f(b) - f(a)] Ax

k=1

When 7 increases (which forces Ax — 0), we find

Ax—0 Ax—0 =1

" b
lim T, = lim > f(x)Ax —0= J f(x)dx

This guarantees that the Trapezoidal Rule approximates the integral as closely
as we please (when 7 is taken sufficiently large). More precisely, it can be proved
that if f” exists in I, and M is an upper bound for | f"(x)| in I, that is,

lf"(x)| =M fora<x=<b
then the error in the Trapezoidal Rule is

E=

n

b 1
J f— Tn‘ = (b= a) M(Ax)?

a

m Example 1

Use the Trapezoidal Rule with n = 4 to estimate

[
1X

Solution
Since Ax = 1, the points of subdivision are x,= 1, x, = 2 X, =2,Xx,= 2, x, = 3. The
corresponding functional values (y, = 1/x,)arey, = 1, y, =3 ¥, = 3 ¥, = 3,

Y, = 1. Hence

3
dezl<l+2+1+2+1>zl.12
x 22737256

Since
3
J d7x =In3=1.10
X

our approximation is correct in the first decimal place. [ ]
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Xo X X2

Figure2 Parabolic
approximation to a curve

m Example 2

Use the Trapezoidal Rule with n = 4 to estimate

1
J Va3 + 1dx
0

Solution

Since Ax = 0.25, the points of subdivision are x,= 0, x,= 0.25, x,= 0.5, x,= 0.75,
x, = 1. The corresponding values of the integrand (rounded off from a calculator)
arey, = 1, y, = 1.0078, y, = 1.0607, y, = 1.1924, y, = 1.4142. Hence

1
J Vx® 4+ 1dx = 0.25(0.5 + 1.0078 + 1.0607 + 1.1924 + 0.7071) = 1.117
0

This time (unlike Example 1) we have no answer to serve as a check. We can,
however, look at the error. If f(x) = Vx® + 1, then

= gy = DX E 4
o= e ™ 9%

An upper bound of |f”(x)| for 0 =x = 1is M = £ (why?), so the error is

E,= 1 (b — a)M(Ax) = 55 (1)($)(0.25)* < 0.02

Our approximation is therefore accurate to at least one decimal place. |

Now we turn to a numerical integration formula based on quadratic approxi-
mation of f(x). Instead of joining consecutive points by straight line segments (as
in Figure 1), we pass parabolic arcs through three points at a time. (Figure 2 shows
the procedure in the first two subintervals of the partition.) In the problem set we
ask you to prove that the area of the shaded region (under the parabola y = p(x)
which passes through the three points) is

X2

Ax
pO)dx ===y, + 4y, + y,)

Xo

Similarly, the area under the next parabola (from x, to x,) is

Ax

3 (y, + 4y, +y,)

Assuming that n is even, we may continue in this way, the area under the last

parabola (from x, _,to x, ) being

-2
Ax
?(yn72+4yn71+yn)

The sum of these areas is

Ax
3 (y,+4y, +y,) + W, +4y,+y)+...+(y,_,+4y,_, +y)l

Ax
=5 o t4y + 2y, + Ay, + 2y, 4 2y, Ay, )
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Note that with the exception of the first and last terms (which have coefficient 1)
the coefficients are alternately 4 and 2. We summarize this result as follows.

Simpson’s Parabolic Rule

Let {x,, x,, . . ., x,} be a partition of [,b] into an even number of subintervals of equal
length Ax = (b — a)/n. If

then

L

b
J f(x) dx 3 (Vo +4y, 2y, +4y,+ ... +2y ,+4y, _+V)
a

Let S, be the right side of Simpson’s formula. It can be shown that if f® exists
in I, and N is an upper bound of | f#(x)| for a = x = b, then the error is

’ 1
J f— Sn‘ =—(b-aNAx*

E =
; 180

n

Since (Ax)* approaches zero much faster than (Ax)* as Ax — 0, we may reasonably
expect that Simpson’s Rule is more accurate than the Trapezoidal Rule. (This is not
always the case, however, because M and N are not the same.)

m Example 3

Use Simpson’s Rule with n = 4 to estimate
[
| x
Asin Example 1, we have Ax =3 andy,=1,y,=3, ¥, =3, Y5 = 5, ¥, = 5 Hence

3
(2214801480 100
1

Solution

x 6 3 5 3

The true value of the integral is In 3 = 1.0986 . . ., so our approximation is accurate
to two places. (Note the improvement over the Trapezoidal Rule.) [ |

m Example 4

Use Simpson’s Rule with n = 4 to estimate
1
j Vx® + 1dx
0

Solution
As in Example 2, we have Ax = 0.25 and X, =0,x,=0.25x,=05,x;,= 075 x,= 1.

Rounding off from a calculator, we find

1
0.25

J Vi’ + 1dx = T(l +4.0311 + 2.1213 + 4.7697 + 1.4142) = 1.1114

0



492  CuapTER 10 m Techniques of Integration

It is a nasty chore to estimate the error because we need the fourth derivative
of f(x) = Vx° + 1 and an upper bound for its absolute value in the interval [0,1].
In any case, however, the error is

N
—

E,=
47180

(0.25)*

The fourth power of 0.25 is considerably smaller than the second power (and of
course 7z is more than ten times smaller than 75). This suggests that the error is less
than in the Trapezoidal Rule, but we cannot be sure without including N. [ |

All things considered, Simpson’s Rule is superior to the Trapezoidal Rule (since
parabolic arcs usually fit a curve better than line segments). It is no harder to com-
pute, and the error is generally smaller. If you feel that the application of these rules
is tedious, remember that to a computer they look easy. Computer-assisted numeri-
cal integration is the most practical way to find all but the simplest integrals.

Problem Set 10.6 19.-22. Use the error bound given in the text to estimate

your accuracy in Problems 1 through 4.
Use the Trapezoidal Rule (with the given value of 1) to com-

pute an approximate value of each of the following inte- 23.-26. Use the error bound given in the text to estimate

grals. When possible, compare with the true value of the your accuracy in Problems 10 through 13.

integral. 27. The width (at 2-inch intervals) of an irregularly shaped
1 J ? dx (1= 4) 2 j ! edr (n1=6) pie.ce of material i.s shown in Figure 3. Use t}.1e Trape-
L X b zoidal Rule to estimate the area of the material.
2 n/2 / \-\
3. J e “dx (n=26) 4. j (1 — cosx)dx
0 0 (n=06) T
v L ¥ 4 7 g 5
5. [ — (m=4) 6. j V1 — x2dx N
o 4 —x o | 1
n=4) Lo \
N
T si | |
7. J i (=4 I
o ¥ 0 2 4 6 8 10 12
Hint: The integral is not improper. Define the inte- Figure 3 TIrregular region
grand at x = 0 so as to make it continuous.
1 28. Repeat Problem 27 using Simpson’s Rule.
8. [ V1+axtde (n=4)
o 29. The force applied to an object to move it 2 meters was
2 measured at 3-meter intervals (starting at the origin of
—x2 —_
9. J' edx (n=4) the motion) and was found to be 15, 18, 20, 16, 18 new-
’ tons, respectively. Use the Trapezoidal Rule to estimate
10.-18. Use Simpson’s Rule (with the given value of 1) to the work done.

compute an approximate value of each of the integrals 30. Repeat Problem 29 using Simpson’s Rule.

in Problems 1 through 9. When possible, compare with
the true value of the integral.
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31.

32.

33.
34.

Use Simpson’s Rule (with n = 4) to compute the length
of thecurvey =sinx, 0<x=mn

Suppose that we want to compute

[
4 X

correct to five decimal places. If the Trapezoidal Rule is
used, how many subintervals are needed to guarantee
this accuracy? Hint: The error must be less than

3 X 1075, (Why?)

Repeat Problem 32 using Simpson’s Rule.

Suppose that f(x) and f” (x) are both positive in [g, b].
Use geometric reasoning to argue that the Trapezoidal
Rule overestimates f ab f. What if f(x) is positive and
f"(x) is negative?

Additional Problems

Find each of the following integrals.

1.

o1

11.

13.

15.

17.

dex
2 +x

x°® +x

In (x2 + 1) dx 8. Jeixixl
[t

e 2

e *cos x dx 14.

3
SF
3l
[mesecrar w0
|
[

dx
J sin® t cos® t dt 16. J _
o cosx + cotx

J x2dx "
b V16 — x*

J'4 dx
1 x+2\/7

35.

36.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

Suppose that f(x) is a polynomial of degree no higher
than 3. Why does Simpson’s Rule give the exact value

b
of [/ f2
To complete the argument in the text for Simpson’s

Rule, we must prove that the area of the shaded region
in Figure 2 is 3Ax(y, + 4y, + y,). Do this as follows.

(a) Letp(x) = Ax?+ Bx + C be an equation of the
parabola passing through (x,,y,), (x,,v,), (x,,¥,)
and let r = x, s = x,. Show that

Js p(x) dx =

r

%(s — r)[2A(s2 + sr + r?) + 3B(s + r) + 6C]

(b) Noting thatx, = 1(r + s), show that Yo+ 4y, T y,is
the expression in brackets in part (a).

(c) Combine parts (a) and (b) to finish the proof.

e
stin‘lxzdx 20. J 5
b 9—e
JS x dx 99 dx
b V9 —x ’ x2— 4

21
J;X_de 28. x3V16 — x? dx
29
J sec? x tan® x dx 30. J x3 5 dx
N x®—x
x2+1
2.
L(2+9)3’2 3 Jx3+1dx
34. J(x— cos x)? dx
,[) 2 + sinx
dx by J"’é dx
x2(x*+ 1) ", cos2x

J xdx 38. J e*sin x dx
0
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5 1
39. S S 40. | x3coshx dx 58. The region enclosed by the curve x = acost, y = bsin t
x> —6x + 13 g y y
3 0 is rotated about the x axis. Find the volume generated,
tan-1 x as follows.
4 _
41. J’ x2 dx 42. J ¥V = 16 dx (a) Use the parametric equations as they stand to
show that
xdx /2
43. J — 44. J x% sin x dx V = 2mab? J sin® t dt
(x = 2) o
and evaluate the integral.
dx
45, o . .
J 5 4 4cosx (b) Eliminate the parameter before setting up an inte
gral for V.
46. Find (c) Whatis Vifa=10b?
Yoxdx
J Nt o 59. Inan AC circuit the power at time ¢ is the product of
0

. . o current I and voltage V. Find the average power during
by making an algebraic substitution. . N
one cycle in each of the following situations.

47. Do Problem 46 by making a trigonometric substitution. (a) The current and voltage are in phase, that is,

48. Use the identity sin?(t/2) = 1(1 — cos t) to find I=1,cos (wt) and V =V, cos (wt)

J dt (b) The current and voltage are out of phase, that is,

1 — cost =1I,cos(wt) and V="V, cos (wt + a)

49. Do Problem 48 by making the substitution t = 2 tan™! u. where 0 < a < /2.
(See Example 4, Section 10.5.)
In each of the following, use the given value of n in the

50. Use the identity cos? (t/2) = 3 (1 + cos t) to find ) . o
Trapezoidal Rule to obtain an approximation to the

[ dt integral.
1+ cost T
60. J esin¥ dx (n=4)
51. Do Problem 50 by making the substitution t = 2 tan™! u. o
Use the reduction formulas in Section 10.1 to evaluate each 61 J ’ 3dx (n = 6)
of the following integrals. h Xt 2
/2 /2 1
) 7 t
52. JO sin® x dx 53. L cos” x dx 2. J' an x i (n = 4)
X
0
54, J' sin® X dx 55. J cos’ x dx 63. Do Problem 60 by using Simpson’s Rule.
0 0

64. Do Problem 61 by using Simpson’s Rule.
56. Show that

1
J sinh Txdx=1— \6+In(1+ \6)

0

65. Do Problem 62 by using Simpson’s Rule.

57. Find the area of the region bounded by the curve
y = tan"!x, the x axis, and the line x = 1.





