
Chapter 1 Introduction to Computers .. 1

 1. Introduction to Computers and Programming

 This chapter provides the student a brief introduction to the basics of hardware
components of a computer, and the functions of these components. Further on, the chapter
provides an understanding of language of the computer, the ideas of computer program,
programming language, and compiler.

 1.1. Basic Computer Concepts

Computers and Computer Programming

A computer is a machine which can accept, store and manipulate data accurately and extremely
quickly. Most computer-users have the wrong perception that the computers are intelligent
machines, and they create wonders. Any apparent intelligence of a computer is in fact the
intelligence of the programmer who programmed it. The computer can only carry out

. It doesn't have any intelligence, and it cannot think. instructions given by the programmer

 If we want to use the computer to solve a problem, then first we have to come up with a

. That is not all; we have to break up this method of solution method to solve the problem
into simple steps, and then we have to write step by step instructions that the computer can carry out and arrive at the solution.

 Professional programs are often referred to as software. Computer system itself is called
the hardware. Writing programs is called computer programming. Breaking up a method of
solution into simple step by step instructions is the most difficult part of computer programming What makes it so difficult? Imagine giving instructions to a brainless .
individual, and trying to get things done through him. We, the programmers, have to do all the
thinking so that the computer doesn't have to think. Sometimes it is easier to solve the problem
by ourselves than writing a computer program to solve it. Then why do we bother to write

A computer is a machine that is capable of accepting, storing and acting on
data and/or a series of instructions given to it by the user, at a great speed
with a high degree of accuracy.

The set of instructions written for the computer to guide it through the
process of achieving a specific task is called a computer program (or
software).

Chapter 1 Introduction to Computers .. 2

programs? Why not solve the problems ourselves? We have to know how to do them either
way.

 Computer Systems

 To be able to use a computer, in addition to the computer we need various devices that
enable us to communicate with the computer. The term "computer system" is used to refer to
the complete system that consists of all the necessary modules, or devices connected to the
computer.

Let us now understand what these components are and what their functions are.

A computer system can be thought of as a combination of three main hardware
: components

1. Input device : a device that allows a person to communicate data to
the computer. Examples: keyboard, hard disk, cd, mouse, scanner.

 2. Output device : a device that allows the computer to communicate
information to the user. Examples: monitor, printer.

 3. Central Processing Unit (CPU): This is the computer. It controls the
operation of the entire system by carrying out instructions given in the operating
system program. It also carries out the instructions in the program when we
execute a program.

There are many . The following reasons to prefer a computer over humans
are some.
 1. A computer carries out instructions perfectly accurately, whereas

humans make errors.
 2. Computer carries out instructions at an extremely high speed.

Computations that would take months for a human to complete can
be finished in seconds.

 3. Computer never gets tired or bored.
 4. Once a program is written, it is good forever for everyone in the

world to solve similar problems.

Chapter 1 Introduction to Computers .. 3

The Central Processing Unit

 The central processing unit is designed to carry out computing tasks in the way similar to
the way human brain does. When we process information, we store them in the memory part of
our brain first. Then the processor part of our brain processes the information in the memory.
To work the same way, the CPU part of the computer consists of a processor and a memory.
The processor in turn consists of control unit and arithmetic-logic unit (ALU). The control
unit fetches instructions from memory, decodes them, and directs the system to execute the
operations indicated by the instructions. The ALU carries out the operations that are
arithmetical or logical in nature by using special registers and circuits. The memory unit is
also identified by the names internal memory, primary memory, main memory and . It is used to store the instructions (programs) and data of the random access memory (RAM)
programs being executed. In other words, the memory is for the computer to temporarily store
all its instructions that are to be carried out at the time, and the data that are to be used at the
time.

Figure 1.1. The central processing unit

 Computer users often mix-up the term memory to permanant storage-media. Examples
of permanent storage media are hard-disk, usb media, cd and dvd. A permanent storage-. Internal media is external to CPU, and it is for permanently storing data and programs
memory, on the other hand, is only for the computer to store the data and programs temporarily while processing them. Internal memory is also known as Random Access
Memory (RAM), and it is simply an ordered sequence of memory cells (which are integrated
circuits) contained on small silicon blocks called chips. Internal memory needs power to hold
the data, and therefore, is erased when the computer is turned off. Student will learn more
details of how data are stored in the memory in Section 1.2.

 The CPU is the computer. All other components of a computer system are used to either
extend the capabilities of the computer system or to provide the user a means to communicate
with the computer. These units are also called . Peripheral devices are input peripherals
devices, output devices, and secondary storage devices such as external hard disks..

Chapter 1 Introduction to Computers .. 4

Input / Output and Data Processing

 Input is what we provide to the computer and output is what we get out of the
computer after processing the input. Usually the input would consist of the data (characters

. When the user executes a program, the or numbers most of the time) and a program
program is first copied into the memory. After that if the user supplies the data, they also are
stored in the memory. Processor then caries out the instructions found in the program which
guide it through processing of the data that are stored in the memory, in the manner intended
by the programmer. The output is the results produced by the computer after processing the
data by following the instructions in the program.

 The process of providing some input (data and program) to the computer and
processing and receiving output is called data processing.

Figure 1.2. Data processing

 Operating System
 As we have noted earlier all that a computer can do is carry out instructions. It
cannot think and therefore cannot do anything by itself. All the basic functions of the
computer, such as recognizing a disk in the disk drive, and recognizing and acting on
various commands issued by the user including mouse-movements, are controlled by a
set of instructions given in a program called Operating System.

Input to a computer usually consists of two parts:
 1. program.
 2. data.

Operating system is a program (software) that controls the overall
operation of the computer

Chapter 1 Introduction to Computers .. 5

 It is due to the operating system program that the computer displays a prompt, and
responds to various commands we type using keyboard. Without the operating system
program the computer would not understand what your commands mean, and therefore
would not function at all. The operating system program must be provided to the
computer before giving any other program or data. In microcomputers the operating
system program is usually stored in disks. The disk that contains the operating system
program is usually called the system disk or startup disk.. If there is a hard disk in the
computer, the operating system is usually stored on the hard disk. If there is no hard disk,
after turning a microcomputer on, the startup disk (usually a cd or dvd) must be inserted
first. The computer will then copy the operating system program from the disk or
hard disk into the memory. This process is called booting up.
 It is the operating system that determines the style in which "user-computer . All the computers interaction" (known as interface) is done in a specific computer
have the same basic structure, the same components, and use the same principle.
However, different operating systems make them interact with the user differently. For
example, Apple Macintosh and PC with Windows appear to work differently because of
the two different operating systems: Mac OS, and Windows.

 Exercises 1.1

1. What is a computer?
2. What is a computer program?
3. What are the three main components of a computer system?
4. What are the two components of the central processing unit?
5. What are the components of the processor?
6. What are the two parts of input usually given to a computer?
7. What is an operating system?
8. What software must be installed in the computer before we can start using it?
9. Describe the key operation the computer performs before it is ready for the user after
the user turns it on.
10. What makes the Macintosh and PC appear to work differently?
11. List three input devices.
12. List two output devices.

Chapter 1 Introduction to Computers .. 6

1.2. Machine Language and Data Representation

 The only language the computer can understand is called Machine Language or
A S C I I (abbreviated as ASCII code). merican tandard ode for nformation nterchange
In this language each character of the character set (characters and numerals and special
symbols) are represented by a set of eight ones and zeros (called bits). Eight bits

. arranged in various orders would represent various characters of the character set
For example the character A is represented in this language by 01000001 and B is
represented by 01000010. Instructions in the program written for the computer also have
to be coded in this language (using bits). Early computer scientists had to design such a
coding system because the character sets cannot be represented inside the computer in the
form of the symbols that we use to identify them. Only the bits can be represented inside
the computer because computers can only distinguish two different things. We shall learn
some details of this language in this section, and then we will see how these codes can be
represented inside the computer. In the ASCII language, numerals are coded by their
binary representations. We shall begin by learning the binary representation of numerals.
Binary Coding of Numerals
 Any data requires some coding system to represent it. To represent quantities we
humans use numbers that are coded in the coding system called . decimal coding system
In decimal coding system, we use the symbol 5, for example, to represent the count five,
and we write the numbers 5 and 2 side by side as 52 to represent fifty-two. The actual
value of the number that is written decimal code as 52 is described as follows:

52 = 510+2 = 5101+2100.

Similarly, the actual value of the decimal code 2354 is
 2354 = 21000 + 3100 + 510 + 41
 2354 = 2103 + 3102 + 5101 + 4100

 As these examples illustrate, in the decimal coding system each digit represents
how many thousands, hundreds, tens, and ones are there in that number. That is, how
many 103 s, 102 s, 101 s, and 100 s are there in that number. Number 10 is said to be the

. In the decimal coding system, to represent a number we use the base of this system
digits that appear in front of 103, 102,101, and 100 in their expansions (as shown in the
right sides of the above equations). Note that the necessary digits to represent any
number in this coding system are the ten symbols 0,1,2, . . . ,9.

 Why should we use 10 as the base? There is no specific reason, except that 10
seems to be a convenient base because powers of 10 are easy to compute. Using 10 as
base calls for using 10 symbols in the code. Instead of 10 if we use 2 as the base of the
number coding system, then we get what is known as binary coding system. To

Chapter 1 Introduction to Computers .. 7

determine the binary coding of a number, we need to express the number as a sum
of multiples of powers of 2 (that is, . . ., 23, 22,21, and 20). Then the numbers that
appear in front of . . . ,23, 22,21, and 20 would make up the binary code for the given
number. When 2 is the base, all the numbers that go in front of . . . ,23, 22,21, and 20
would only be two: 0 and 1. The following two examples illustrate.

 Example 1.2.1. To determine the binary code of the decimal number 13, express it as

13 = 123 + 122 + 021 + 120.
    

These digits make up the binary code
 Thus the binary code of 13 is 1101.

Example 1.2.2. Let us determine the binary code of the decimal number 37.

The highest power of 2 that has a value smaller than 37 is 25 (which is equal to 32).
Therefore our expression for 37 would begin with 25 and decrease in power down to 20.
You begin by writing a 1 in front of 25 and then determine which powers of 2 should
have 1 in front of them and which ones should have 0 so that the entire expression
simplifies to equal 37.

37 = 125 + 024 + 023 + 122 + 021 + 120.

Therefore the binary code of 37 is 100101.

Warm-up Exercise 1. Determine the binary code of 19 and 65 using the above approach.

Shorter Method for Binary Code

 A shorter approach to finding the binary code is to repeatedly divide the given
number by 2, writing the answers and remainders as shown in the following example.
Terminate the repeated division when the answer becomes zero. Then the remainders,
written in the reverse order (that is, from bottom up) would make up the binary code of
the number.

Example 1.2.3. Let us find the binary code of 37 using the short cut approach

Chapter 1 Introduction to Computers .. 8

 remainders
 2 | 37
 2 |18 - 1
 2 | 9 - 0
 2 |4 - 1
 2 |2 - 0
 2 |1 - 0
 0 - 1

 Writing the remainders starting with the bottom one first, we get the binary code of
37: 0100101. Note that 0s in the front may or may not be included.

 Finding Decimal Equivalent of a Binary Coded Number
 To find the decimal equivalent of a binary coded number, you do the above process
in the opposite way. For example, to find the decimal equivalent of the binary code
101101, you would begin by writing 120 as the decimal value of the last bit, and add
021 as the decimal value of the bit 0 in front of it and so on, arriving at the expression:

125 + 024 + 123 + 122 + 021 + 120.

Simplifying this expression yields 45 as the decimal equivalent of the binary number
101101.

Warm-up Exercise 2.
 (a) Find binary code of 17, 35, and 86

 (b) Find decimal codes of 10010, 110101, and 0010101

 The ASCII codes

 ASCII codes for numbers are same as their binary codes discussed above. For the
characters, a coding system was developed using eight 1s and 0s for each character.
These 1s and 0s in this coding system are referred to as . bits

 Table 1.1 below shows some examples of characters, their ASCII codes, and the
decimal equivalents of these ASCII codes (that is, the decimal numbers whose binary
codes are the same as the specific ASCII codes) which are called the decimal codes of
these characters.

Chapter 1 Introduction to Computers .. 9

 Table 1.1. ASCII and Decimal Codes
 Character ASCII code Decimal code

 A 01000001 65
 B 01000010 66
 C 01000011 67
 D 01000100 68
 E 01000101 69
 Z 01011010 90
 a 01100001 97
 b 01100010 98
 c 01100011 99
 d 01100100 100
 e 01100101 101
 z 01111010 122

 A complete list of all the characters and commonly used key combinations and their
decimal codes is provided in Appendix B.

Representing Character Data in The Computer Memory

 The computer is an electrical equipment just like a television or a VCR. How does
it understand numbers, characters and the instructions given in a program? The idea is to

. This is represent each character and number by using a set of electric circuits
because since a machine can recognize electricity, it can distinguish a circuit that has
electricity flowing through (an on-circuit) and another one that has no electricity flowing
through (an off-circuit).
 A circuit is a loop of wire through which electricity can flow. Electricity passes
through a circuit, only when it is complete and connected to the power source. Such a
circuit is said to be turned on. If any part of the circuit is disconnected, no electricity
would pass through it, and the circuit is said to be turned off.

 Circuit “on” Circuit “Off”
 Figure 1.3. "On" and "off" settings of circuits

Chapter 1 Introduction to Computers .. 10

 Inside the computer (more precisely inside the RAM) thousands of circuits are networked together in pieces of silicon (a substance that does not conduct
electricity). These pieces are called silicon chips, and they are about one inch squares.
These chips make up the RAM.

 To represent a character in the RAM, 8 circuits are turned on or off according to what the ASCII code of the character is. To represent each 1 in the
ASCII code, a circuit gets turned "on", and to represent each 0 in the ASCII, a circuit gets
turned "off".

 “On” represents bit 1 “Off”

Figure 1.4. Circuit settings that represent 1 and 0

 For example, to represent the character B, whose ASCII code is 01000010, a network of
eight circuits are set in the manner shown in Figure 1.5 below.

 Figure 1.5. The character data 'B' stored in the memory

A byte of the memory

 A byte represents the amount of memory needed to store one character data. As
noted earlier, to represent one character, we need a group of 8 circuits. Therefore, a byte
consists of 8 circuits (or 8 bits). Therefore,

The job of each key on the keyboard is turning the circuits in a byte on and off according to the ASCII code of the character it represents whenever it is pressed. The
following example illustrates this.

 1 byte = 8 bits.

When we input a single character data (by typing it in the keyboard,
for example), inside the RAM a network of 8 circuits would be
selected and each circuit would be set "on" or "off" according to the
ASCII code of the character.

Chapter 1 Introduction to Computers .. 11

Example 1.2.4. When we type the character 'a' by pressing the key labeled "a" in the
keyboard, it sends a signal to the computer to set the next 8 available memory circuits as
shown in Figure 1.6. That is, 8 circuits of memory get set to represent the ASCII code
01100001 of the character 'a'.

 Figure 1.6. The character 'a' stored in the memory

 Millions of circuit-networks that constitute bytes are put together in memory
chips that make up the RAM.
 It is now clear why RAM is erased when the power is turned off. When the
power is turned off all the circuits become off, and therefore no data is represented inside
the RAM anymore.
 Secondary storage devices such as hard-disks and CDs use a different method to
permanently store data. They do not need electric power to hold the data. However, their
storage capacities are also measured using the same units. For any data storage medium
(memory or secondary storage device) a byte of memory is the space needed to store

. Since computer memory should be sufficient for storing data one character of data
being processed and the programs that are being executed, it needs to be very large. The
measure “byte” is too small to measure large memory or secondary storage. Bigger units
to measure memory and secondary storage spaces are defined as follows.

Storing Numeric Data in the Computer Memory

 As noted earlier, each character data has 8 bits in its ASCII code, and therefore
each character can be stored in one byte of memory (or one byte of any storage-media).
Machine language code of a number is its binary code, and therefore, when a number is
stored in the memory its binary code gets stored by setting circuits "on" and "off" to
represent the 1s and 0s in the code. Depending on the size, numbers may require more
than one byte to store them. Only the numbers whose binary codes have 8 bits or less

One kilo byte (1K) = approximately 1000 bytes.
One mega byte (1MB) = approximately 1000 kilobytes
 = approximately 1 million bytes.
One giga byte (1GB) = 1000 mega bytes.
One terra byte (1TB) = 1000 giga bytes

Chapter 1 Introduction to Computers .. 12

can be stored in one byte of memory. If the binary code of a number has more than 8 bits
but less than 16 bits, then two bytes will be necessary to store that number. Similarly for
larger numbers more than two bytes have to be used.

 We will see later how to tell the computer in a program to allow more than one
byte for a number.

 For a number that has 15 bits in its binary code, for example, two bytes of
memory will be used, and the binary form of the number will be stored by storing the last
eight bits in the second one of the two bytes and the remaining bits will be stored in padding with 0s at its front if necessary. the first byte

 Example 1.2.5. Find the binary code of 1279 and determine how many bytes of memory
is required to store that number, and show how it will be stored.

 The binary code of 1279 is 10011111111, which has 11 bits. Therefore, two
bytes of memory will be needed. So, the number will be stored as follows.

 First byte Second byte
 Example 1.2.6. Determine the largest number that can be stored in one byte of memory.

 One byte of memory has 8 bits. The largest number that can be stored in one byte
of memory is the number that has only eight bits in its binary code with all bits equal to 1.
This is because when any bit is 0, the value of the number is lower. Hence, the largest
number we can store in one byte is the number whose binary code is 11111111, whose
decimal equivalent is

127 +126 +125 + 124 + 123 + 122 + 121 + 120
which is equal to 255.

From Example 5, it is clear that

 The details of how larger numbers are stored are presented later. Quicker way to find
the largest number that fits in a memory byte is the following. Recall from Algebra
that the sum of the series 20+ 21+22+…+2n is 2n+1-1. Therefore, the largest number that
can be stored in one byte of memory = 20+ 21+22+…+27 which is equal to 27+1-1 = 255.

Any number larger than 255 requires more than 1 byte of
computer memory.

0011111111 0000 0001

Chapter 1 Introduction to Computers .. 13

Warm-up Exercise 3. What is the largest number that can be stored in two bytes of
memory?

 Other Coding Systems

 We noted earlier that when the base of the number system is 10, we call it decimal
coding system, and when the base is 2 we call it binary coding system. Two other coding
systems are important to computer scientists. The octal coding system is one in which
the base is 8, and the hexadecimal . coding system is one in which the base is 16

Octal Coding
 To find the octal code of a number, you need to express it as a sum of powers of
8. The digits that appear in front of each power of 8 make up the octal code. Only
symbols that would appear in an octal code would be 0, 1, 2, 3, 4, 5, 6, and 7.
 Example 1.2.7. Find the octal code of 459.

Expressing 459 as a sum of powers of 8, we have
 459 = 782 + 181 +380,
 and therefore the octal code of 459 is 713.

Quick Method for Octal Code
 Just like the quick method to finding the binary code, the quick method to finding
the octal code is to divide the number continuously by 8 until we get an answer less than
8.
 8 459
 8 57 - 3
 7 - 1
 The remainders written bottom-up, 713, is the octal code.

 Since the base of the octal coding system is 8, the digits that will appear in the
octal code of a number are 0, 1, 2, 3, 4, 5, 6, 7 (that is, all the numbers less than 8).

Hexadecimal Coding

 Similar to the octal coding system, to find the hexadecimal code of a number, we

. The digits that will appear will have to express the numbers as a sum of powers of 16
in the hexadecimal code of a number would be 0, 1, ……, 9, 10, 11, 12, 13, 14, 15. The
two digit numbers 10, 11, …, 15 clearly cannot be used as digits in the hexadecimal
codes because if we use them one would not be able to determine whether to identify, for
example, the hexadecimal coded number 1115 as 11161 +15160, or as 1163+ 1162

Chapter 1 Introduction to Computers .. 14

+ 1161 +5160. For this reason in hexadecimal coding system the alphabets A, B, C,
. D, E and F are used in place of 10, 11, 12, 13, 14, and 15 respectively

Example 1.2.8. Find the hexadecimal code of the number 1279.

Expressing 1279 as sum of powers of 16, we get

 1279 = 4162+ 15161 +15160,
 and therefore the hexadecimal code of 1279 is 4FF.

Just as in the other coding systems, the quick method for finding the hexadecimal code is
to repeatedly divide the number by 16.

 A list of all the characters and their decimal, octal and hexadecimal codes are
provided in Appendix B.

 Exercises 1.2

 1. Find the binary code of the integer 97.
 2. Find the binary code of the integer 89.
 3. Find the decimal code of the binary number 01011010
 4. Find the decimal code of the number 10010111.
 5. Find the decimal code of the number 10101100.
 6. ASCII code of the character D is 01000100. What is its decimal code?
 7. ASCII code of the character f is 01100110. What is its decimal code?
 8. Find the binary code of the number 18. If this number is stored in the memory of the
computer, show the on/off settings of the byte of the memory where it is stored.
 9. Find the binary code of the number 161 and determine how many bytes are needed to
store it.
 10. Find the binary code of the number 265 and determine how many bytes are necessary
to store this number.
 11. How many bytes of memory is needed to store the word SUNSHINE?
 12. How many bytes of memory is needed to store the word EASTERN?
 13. How many bytes are in a megabyte?

Chapter 1 Introduction to Computers .. 15

14. A diskette has 1.44 mega byte of storage. How many characters can be stored in this
diskette.
 15. Determine the largest number that can be stored in three bytes of memory.
 16. Determine the largest number that can be stored in two bytes of memory.
 17. Find the octal code and hexadecimal code of 3245.
 18. Find the octal code of 7259.
 19. Find the hexadecimal code of 3342
 20. Find the hexadecimal code of 2834.
 21. Find the decimal equivalent of the hexadecimal number 2C8.
 22. Find the decimal equivalent of the hexadecimal number E7B.

1.3. Programming Languages and Compilers

Programming Languages

 As we have seen earlier, data and instructions for a computer must all be given in
the machine language. Therefore early programmers had to learn the machine language
to be able to write computer programs. But this language is very difficult to work with.
Programs almost always have errors after writing them the first time. We have to go
through it, find errors, and fix them before they will work. A program written is machine
language is too difficult to read through again and figure out errors. Therefore, computer
scientists designed programming languages.

 Programming languages are also called high level languages. There are many such
languages. The languages FORTRAN, BASIC, Pascal, COBOL, BASIC, Ada, C, C++,
C# (pronounced C-sharp) Python, and JAVA are some of them. Computers do not
understand these languages. We need the aid of (discussed later) to be able to compilers
execute programs written in these languages. Java is a relatively new language evolved
from C++. The language C# is also a relatively new programming language, designed by
Microsoft for a wide range of enterprise applications that run on the .NET Framework.
The C# language is simple, modern, type safe and object oriented

A programming language is a language that is closer to
, and therefore convenient English than the machine language

for humans to write programs for the computer.

Chapter 1 Introduction to Computers .. 16

Why not English?
 Why can't we communicate with the computer in English or other natural
languages? No computer can be designed to understand natural languages, because the

. natural languages have too many ambiguities

 Compiler

 Asking the computer to carry out the instructions given in a program is called
"executing the program" or "running" a program. Only a program written in the
machine language can be executed because the computer understands only this
language. Computer scientists have developed computer programs called Compilers (one
for each programming language) to translate programs written in any programming
language into one in machine language.

Compilers of other programming languages work the same way.

Executing a Program

 To execute a C++ program on the computer, first the program must be translated to
one in the machine language by accessing and using the compiler. The process of
translating a program written in a programming language into a program in machine
language is called compiling.

 When we issue the command to execute the program, the machine follows the
instructions given in the machine language version of the program.

 C and C++ Languages

 C++ is one of today's most popular software development languages. It is an
extension of the C language. That is, it includes all of the C language features and has
much more. It is the object oriented programming capabilities of C++ that make it much
more powerful and desirable than C. A C program can be compiled using a C++
compiler but not the other way around.

The C++ Compiler is a computer program which, when
executed, takes a program written in C++ as input and writes
the same program in machine language as output.

Chapter 1 Introduction to Computers .. 17

Programming Environments
 Computes are configured in wide variety of ways. They can be grouped into four
kinds based on their sizes and capabilities. They are presented here in the increasing
order of capabilities:

 Smallest kind of computers called micro computers, which include lap tops are
dedicated to a single user. Examples are PC and Macintosh. Mini computers are more
powerful and faster than micro computers. They can serve multiple users simultaneously.
Larger computers, called main frames, can also serve numerous users simultaneously.
The fourth kind of computers called super computers, have "parallel processing"
capability and allow multiple users. That is, super computers can process many jobs
simultaneously. Since mini computers and main frame computers also permit multiple
users, they appear to be processing jobs in a parallel manner. But they actually process
jobs one at a time. For our purposes all these computers serve the same function and
behave similarly.

 Exercises 1.3

1. What is the language that the computers understand?
 2. Name four high level languages?
 3. Can the computer understand high level programming languages? If not, why do we
choose to write programs in these languages?
 4. After typing a program written in C++ language into the computer, can we execute it
right away? If not what do we have to do first?
 5. Name the four categories of computers.
 6. Name a micro computer. Name a mainframe computer.
 7. Which group of computers fall in between micro and mainframe?
 8. Why can't English be a programming language?

1. Micro computers
 2. Mini computers 3. Main frame computers 4. Super computers.

Chapter 1 Introduction to Computers .. 18

Programming Projects 1.3
 (Compiling, executing, and understanding syntax errors)
Project 1.3.1. The program given below is written to compute the product of the two
numbers 32.5 and 124.8. Note that any line that begins with double slash in a C++
program is a comment to be read by any human reader of the program, and it is ignored
by the compiler. Your name must be written as a comment in the program as indicated in
the program.
 Program:

 Part 1 of the project: Type this program using the computer, save it on your disk,
compile it and execute it. When the program works correctly, it should produce the
following output on the screen. Product is : 4052.75
 The system(“pause”) statement is only necessary when using some compilers to
make the system hold the output window open. If you type anything and press enter, the
output window will close. This window cannot be printed since it doesn’t have a print
command associated with it. To print the display, first move the two windows, if
necessary, to make sure that the program and the output are fully displayed. Then press
the PrintScreen button on the keyboard. This key takes a picture of the entire screen and
saves it in the clip-board of the computer. Open a word processor program and select
Paste command from the Edit menu to paste the picture. Then print the picture by
selecting the Print command from File menu of the word processor.

 Now close the word processor, activate the output window by clicking on it, type
a number, and press Enter. The output window closes.

Part 2 of the project: Change the line

#include <iostream>
using namespace std;
// Programmer:Type your full name here.
// This program computes the product of the numbers 32.5 and 124.7.
 main()
 {
 float n1=32.5, n2=124.7, product;
 int num;
 product = n1 * n2;
 cout << "Product is : " << product << "\n";
 system("pause");
 }

Chapter 1 Introduction to Computers .. 19

 cout << "Product is : " << product << "\n";
 found in the program to have
 cout << " Product is : " << product << \n;
(that is, remove the double quotes arround the escape sequence: \n) and compile the
program again. You should get a syntax error message during compilation the program.
Print the new version of the program and the window that shows the error message by
following the instructions given above.

Project 1.3.2. The program given below is written to compute the quotient (integer
component of the answer) and the remainder of dividing the number 349 by 8. Since 8
goes into 349 forty three times with a remainder of 5, the output of executing this
program will be
 Quotient = 43
 Remainder = 5

 Part 1 of the project: Type this program using the computer, save it on your disk,
compile it and execute it. When the program works and produces the correct answer, you
need to print the display. To print the display, first move the two windows, if necessary,
to make sure that the program and the output are fully displayed. Then press the
PrintScreen button on the keyboard. This key takes a picture of the entire screen and
saves it in the clip-board of the computer. Open a word processor program and select

#include <iostream>
using namespace std;
/* Programmer:Type your full name here.
This program computes the quotient and the remainder of dividing any
given integer data by 8. */
main()
 {
 int n1=349, quotient, remainder, dummy;
 float decimal_answer;
 decimal_answer = n1/8.0; // Compute floating point answer of division
 quotient = decimal_answer; //Quotient is integer component of answer
 remainder = n1 - quotient * 8;
 // Now write the results on the screen.
 cout << "Quotient = " << quotient << "\n"
 << "Remainder = " << remainder;
 cout << "Enter a number when finished reading:";
 cin >> dummy;
 return 0;
 }

Chapter 1 Introduction to Computers .. 20

Paste command from the Edit menu to paste the picture. Then print the picture by
selecting the Print command from File menu of the word processor.

 Now close the word processor, activate the output window by clicking on it, type
a number, and press Enter. The output window closes.

Part 2 of the project: After printing the program, change the line
 remainder = n1 - quotient * 8;
 found in the program to have
 remainder = n1 - quotient * 8
(that is, remove the semicolon found at the end of the line) and compile the program
again. You should get a syntax error message from the compiler. Print the new version
of the program and the window that displays the error message by following the same
instructions given above.

Turn in the original program and the output, and the modified program with the error
message.

	Front Cover
	Title Page
	Copyright Page
	Preface
	Table of Contents
	1. Introduction to Computers and Programming
	1.1 Basic Computer Concepts
	1.1 Exercises

	1.2 Machine Language and Data Representation
	1.2 Exercises

	1.3 Programming Languages and Compilers
	1.3 Exercises
	1.3 Programming Projects

	2. Basics of Computer Programming
	2.1 Constants, Variables, and Writing Programs
	2.1 Exercises

	2.2 Variable Types and C++ Statements
	2.2 Exercises
	2.2 Programming Projects

	2.3 Type Conversions of Values
	2.3 Exercises
	2.3 Programming Projects

	2.4 Input Through Keyboard and Interactive Programs
	2.4 Exercises
	2.4 Programming Projects

	2.5 Variable Types and Memory Allocations
	2.5 Exercises

	Cumulative Review Exercises 1 (Chapters 1 and 2)
	3. Decision Making Statements
	3.1 Simple if statements
	3.1 Exercises

	3.2 The if-else Statements
	3.2 Exercises

	3.3 Nested if Statements
	3.3 Exercises

	3.4 Logical Operators
	3.4 Exercises
	3.4 Programming Projects

	3.5 The Switch Statement
	3.5 Exercises
	3.5 Programming Projects

	4. Loops
	4.1 The While Loop
	4.1 Exercises

	4.2 The for Loop
	4.2 Exercises

	4.3 Writing Algorithms
	4.3 Exercises

	4.4 Counting Technique
	4.4 Exercises
	4.4 Programming Projects

	4.5 Accumulation of Sums and Products
	4.5 Exercises
	4.5 Programming Projects

	Cumulative Review Exercises 2 (Chapters 3 and 4)
	5. Functions
	5.1 Defining a Function
	5.1 Exercise

	5.2 Calling a Function
	5.2 Exercises
	5.2 Programming Projects

	5.3 Function Libraries and Header Files
	5.3 Exercises
	5.3 Programming Projects

	5.4 References and Passing by Reference
	5.4 Exercises

	6. Arrays
	6.1 Introduction to Arrays
	6.1 Exercises

	6.2 Declaring and Initializing an Array
	6.2 Exercises

	6.3 Using Arrays
	6.3 Exercises
	6.3 Programming Projects

	6.4 Two Dimensional Arrays
	6.4 Exercises

	6.5 Passing Arrays to Functions
	6.5 Exercises

	6.6 Searching and Sorting Arrays
	6.6 Exercises
	6.6 Programming Projects

	Chapter 6 Review Exercises

	Cumulative Review 3 (Chapters 5 and 6)
	Cumulative Review Exercises (Chapters 1-6)
	7. Pointers and Memory Management
	7.1 Anatomy of Memory and "Address of" Operator &
	7.1 Exercises

	7.2 Introduction to Pointers
	7.2 Exercises

	7.3 De referencing a Pointer
	7.3 Exercises

	7.4 Pointer Arithmetic
	7.4 Exercises

	7.5 Arrays and Pointers
	7.5 Exercises

	7.6 Dynamic Memory Management
	7.6 Exercises

	7.7 Strings
	7.7 Exercises
	7.7 Programming Projects

	7.8 Array of Pointers and Array of strings
	7.8 Exercises
	7.8 Programming Projects

	Chapter 7 Summary
	Chapter 7 Review Exercises

	8. Input/Output Streams and Files
	8.1 Streams
	8.1 Exercises

	8.2 Streams and External Files
	8.2 Exercises

	8.3 Reading and Writing Files
	8.3 Exercises
	8.3 Programming Projects

	8.4 Random File Access
	8.4 Exercises

	8.5 Passing File Names
	8.5 Exercises

	Chapter 8 Review Exercises

	9. User Defined Data Structures
	9.1 Introduction to Structures
	9.1 Exercises

	9.2 Arrays of Structures
	9.2 Exercises

	10. Classes
	10.1 Writing Definitions of Classes
	10.1 Exercises

	10.2 Creating and Manipulating Objects of a Class
	10.2 Exercises
	10.2 Programming Projects

	10.3 Additional Class Features
	10.3 Exercises
	10.3 Programming Projects

	10.4 Operator Overloading
	10.4 Exercises
	10.4 Programming Projects

	Cumulative Review Exercises 4 (Chapters 9 and 10)
	11. Inheritance and Polymorphism
	11.1 Derived Classes
	11.1 Exercises
	11.1 Programming Projects

	11.2 Polymorphism
	11.2 Exercises

	11.3 Abstract Classes
	11.4 Virtual Destructors and Interface Classes
	11.4 Exercises

	Chapter 11 Review Exercises

	12. Recursion
	12.1 Exercises
	12.2 Applications of Recursion
	12.2 Exercises
	12.2 Programming Projects

	Cumulative Review Exercises 5 (Chapters 11 and 12)
	13. Templates
	13.1 Function Overloading
	13.1 Exercises

	13.2 Function Templates
	13.2 Exercises

	13.3 Class Templates
	13.3 Exercises

	13.4 The vector Container
	13.4 Exercises

	Appendix A Operators in their Order of Precedence
	Appendix B ASCII Character Codes
	Answers for Odd Numbered Problems
	Back Cover

