
41

Chapter 2
More “Beginning” SQL Commands
and Statements

In this chapter, we start by expanding the power of the SELECT statement. Then we show how to create
tables, insert values into tables, as well as change values and delete rows from tables. The next section
in this chapter discusses the transaction processing commands ROLLBACK, COMMIT, and SAVEPOINT,
which can be used in multi-user environments. Transaction processing commands can be used to undo
changes in the database within a transaction. The chapter closes with a discussion of common datatypes
available in Oracle and includes an extended discussion of the DATE datatype.

2.1 An Extended SELECT Statement
The SELECT is usually the fi rst word in a SQL statement. The SELECT statement instructs the database
engine to return information from the database as a set of rows, a “result set.” The SELECT displays the
result on the computer screen but does not save the results. (Chapter 1 demonstrated how to save queries
and results.)

The simplest form of the SELECT syntax is:

SELECT attributes
FROM Table;

A database consists of a collection of tables and each table consists of rows of data. The above statement
returns a result set of zero or more rows which is drawn from specifi ed columns (attributes) available in a
table. In the above statement, “Table” is the name of the table in the database from which the data will be
taken, and “attributes” are the selected columns (attributes) in the table. The keywords SELECT and FROM
are always present in a SELECT statement in Oracle.

For example,

SELECT name, address
FROM Old_Customer;

would select the attributes name and address from the table, Old_Customer. The result set would
consist of rows of names and addresses in no particular row-order.

Begin Note
 The table, Old_Customer, has not been created for you. You would have to create this table before you
could try out this statement.
End Note

42

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

An asterisk (*) in place of the attributes would mean “list all the attributes (or columns) of the table”
(i.e., whole rows).

An example of using the asterisk would be:

SELECT	 *
FROM	 Student;

where the “*” means return “all columns” from the table, Student.

2.1.1  SELECTing Attributes (Columns)
All of the attributes (columns) and/or all of the rows do not have to be retrieved with a SELECT statement.
When the SELECT is executed, what is shown is called the result set. Attribute names may be SELECTed
from a table, provided the exact name of the attribute is known. To find out the exact name of the attributes,
use “DESC tablename” (DESCribe) as discussed in Chapter 1.

As an example of using DESC in our Student-Course database, we have a table called Student. And,
suppose we want to list all the student names from this Student table. First, use

DESC Student

and find that the attribute name for “student name” is “sname”:

SQL> DESC Student

Gives:

Name	 Null?	 Type
----------------	 --------------	 ------------------------
STNO	 NOT NULL	 NUMBER (38)
SNAME		 VARCHAR2 (20)
MAJOR		 VARCHAR2 (4)
CLASS		 NUMBER (38)
BDATE		 DATE

Begin Note
�All SQL statements require semicolons or slashes to execute them. SQLPLUS commands do not require
semicolons or a terminating character, but if you use one, SQLPLUS is usually forgiving and will execute
the command correctly anyway. Hence, DESC does not require a semicolon, while the SELECT does.
End Note

To show a listing of student names, we use the following query:

SELECT	 sname
FROM	 Student;

This would give:

SNAME

Lineas
Mary
Brenda
Richard
Kelly
Lujack
Reva

43

A Practical Guide to Using SQL in Oracle

.

.

.
Smith
Jake

48 rows selected.

Note the result set is unordered. Why?

2.1.1.1  Using ORDER BY
The result set (the output) of the above query contains all the sname-values (student names) in the Student
table. But, the sname-rows in the result set are not ordered since a relational table does not guarantee its
rows are in any particular order. Rows in relational database tables are supposed to be mathematical sets (no
particular ordering of rows and no duplicate rows); result sets are similar to mathematical sets because no
order is implied, but in SQL duplicate values may occur. To show the contents of a table in a specific order,
we can force the ordering of the result set using the ORDER BY clause in the SELECT.

For example, the query below will show the name (sname) and major from the Student table, ordered
by sname. Here the output will be ordered in ascending order of sname because ascending order is the
default of the ORDER BY clause. So if we type:

SELECT	 sname, major
FROM	 Student
ORDER BY	 sname;

This will give:

SNAME	 MAJO
-------------- 	 -----------
Alan	 COSC
Benny	 CHEM
Bill	 POLY
Brad	 COSC
Brenda	 COSC
Cedric	 ENGL
Chris	 ACCT
Cramer	 ENGL
Donald	 ACCT
Elainie	 COSC
Fraiser	 POLY
.
.
.
Susan	 ENGL
Thornton
Zelda	 COSC

48 rows selected.

To order the output in descending order, the keyword DESC can be appended to the appropriate attri-
bute in the ORDER BY clause as follows:

SELECT	 sname, major
FROM	 Student -- this time we ask for descending order
ORDER BY	 sname DESC;

44

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

This will give:

SNAME	 MAJO
--------------------	 ----------
Zelda	 COSC
Thornton
Susan	 ENGL
Steve	 ENGL
Stephanie	 MATH
Smithly	 ENGL
Smith
Sebastian	 ACCT
Sadie	 MATH
Romona	 ENGL
Richard	 ENGL
.
.
.
Bill	 POLY
Benny	 CHEM
Alan	 COSC

48 rows selected.

Begin Note
�In the above query, the comment cannot be inserted after the semicolon. The semicolon has to be the
last thing in a query, marking the end of a query.
End Note

The collection of names and majors are the same in both the previous result sets, but the names in the
latter result are in descending (reverse) order by sname.

We may also order within an order. For example, suppose we type:

SELECT	 sname, major
FROM	 Student
ORDER BY major DESC, sname;

The result is:

SNAME	 MAJO
--------------------	 ---------
Lionel
Smith
Thornton
Genevieve	 UNKN
Lindsay	 UNKN
Bill	 POLY
Fraiser	 POLY
George	 POLY
Harley	 POLY
Holly	 POLY
Jessica	 POLY

45

A Practical Guide to Using SQL in Oracle

Ken	 POLY
Lynette	 POLY
Jake	 MATH
Kelly	 MATH
Mario	 MATH
Monica	 MATH
Reva	 MATH
Sadie	 MATH
Stephanie	 MATH
Cedric	 ENGL
Cramer	 ENGL
.
.
.
Donald	 ACCT
Francis	 ACCT
Harrison	 ACCT
Sebastian	 ACCT

48 rows selected.

Here the output is principally ordered by major in descending order and then by sname within major
with the names in ascending order.

Begin Note
The ascending order is the default order of the ORDER BY clause.
End Note

Begin Note
�In this example, some names have no value for major. Unless prohibited by the table creator, nulls are
allowed for values. Notice in the example null values sort last because in the example the values are
presented in descending order.
End Note

2.1.2  SELECTing Rows
The output of rows in the result set may be restricted by adding a WHERE clause to the SELECT. When the
WHERE clause is used, the database engine selects the rows from the table that meet the conditions given
in the WHERE clause. If no WHERE clause is used, the query will return all rows from the table. In other
words, the WHERE clause acts as a “row filter.”

The simplest format of the SELECT with a WHERE clause would be:

SELECT	 attribute(s)
FROM	 Table
WHERE	 criteria;

For example, to list the sname of only those students who are seniors we would type:

SELECT	 sname
FROM	 Student -- we add a row filter in the next line to show only seniors
WHERE	 class = 4;

46

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

This will give:

SNAME

Mary
Kelly
Donald
Chris
Holly
Jerry
Harrison
Francis
Jake
Benny

10 rows selected.

All of the comparison operators:

> (greater than),
<> not equal,
= equal,
> = greater than or equal to, and so on

are available for WHERE conditions.

Multiple conditions can be included in a WHERE clause by using logical operators, AND and OR. In
addition there is also a BETWEEN operator. The following sections discuss the use of the AND, OR, and
BETWEEN operators in the WHERE clause.

2.1.3  Using AND
By using AND in the WHERE clause of a SELECT, we may combine conditions. The result set with WHERE
.. AND .. can never contain more rows than the SELECT with either of the conditions by themselves.

For example, consider the following query:

SELECT	 sname, class, major
FROM	 Student
WHERE	 class = 4 -- both conditions must be true to retrieve a row
AND	 major = ‘MATH’;

This gives us:

SNAME	 CLASS	 MAJOR
-----------------------	 ----------	 -----------
Kelly	 4		 MATH

1 row selected.

The AND clause means both the conditions, “WHERE class = 4 AND major = ‘MATH’,” have to be met
for the row to be included in the result set.

47

A Practical Guide to Using SQL in Oracle

2.1.4  Using OR
Another way to combine conditions in a WHERE clause is by using the OR operator. The OR operator can
be used when either of the conditions can be met for a row to be included in the result set. For example,
consider the following query:

SELECT	 sname, class, major
FROM	 Student
WHERE	 class = 4 -- either condition being true gives us a row
OR	 major = ‘MATH’;

This gives us:

SNAME	 CLASS	 MAJOR
--------------------	 ------------	 ----------
Mary	 4	 COSC
Kelly	 4	 MATH
Reva	 2	 MATH
.
.
.
Benny	 4	 CHEM
Mario		 MATH
Jake	 2	 MATH

16 rows selected.

This result set is a tabulation of all students who are either MATH majors OR seniors (class = 4). The OR
means either of the criteria, “WHERE class = 4 OR major = ‘MATH’,” may be met for the row to be included
in the result set.

It is not necessary to include all of the attributes used in the WHERE clause in the result set. It is a good
idea to include the attributes when checking a query, but the following query is also legal:

SELECT	 sname -- this is allowable, but why not include class and major too?
FROM	 Student
WHERE	 class = 4
OR	 major = ‘MATH’;

Giving:

SNAME

Mary
Kelly
Reva
Donald
.
.
.
Benny
Mario
Jake

16 rows selected.

48

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

2.1.5  Using BETWEEN
The BETWEEN operator returns rows when a value occurs within a given range of values. The general
syntax of the BETWEEN operator is:

SELECT …
FROM …
WHERE	 attribute
BETWEEN	 value1 AND value2;

To find all the student rows with class values between 1 and 3 (inclusive), type:

SELECT	 sname, class
FROM	 Student
WHERE	 class -- class = 1, 2 and 3 will satisfy the WHERE condition
BETWEEN	 1 and 3;

This gives us:

SNAME	 CLASS
--------------------	 ----------
Lineas	 1
Brenda	 2
Richard	 1
Lujack	 1
Reva	 2
Elainie	 1
Harley	 2
.
.
.
Gus	 3
Jake	 2

28 rows selected.

In Oracle SQL, value1 has to be less than value2. The end points are included in the result set
(BETWEEN is “inclusive”). The same “between result” could also be obtained using the query:

SELECT	 sname, class
FROM	 Student
WHERE	 class >=1
AND	 class <=3;

2.2  A Simple CREATE TABLE Statement
The CREATE TABLE statement allows us to create a table in which we can store data. A minimal syntax
for this statement is as follows (we will expand this CREATE TABLE syntax with more options in a later
chapter):

CREATE TABLE Tablename (attribute_name datatype, attribute_name datatype, …);

Tablename and attribute names are your choice, but keywords should be avoided (words like “table”
or “select”). A datatype defines the kind of data allowable for an attribute, e.g., numbers, alphanumeric char-
acters, or dates. (We have a whole section on datatypes later in the chapter.)

49

A Practical Guide to Using SQL in Oracle

In Example 1 below, we will be creating a table called Customer. Suppose the table has two attributes:
customer number (we choose to abbreviate this as cno) and balance. The datatypes we choose are:

The cno attribute is a fixed-length character attribute with a length of 3 and will represent the customer
number. The balance attribute is numeric with five digits and no decimals. The appendage “DEFAULT 0”
means if no value is specified for balance when rows are inserted into the table, balance will be set equal
to zero rather than null.

Example 1:

CREATE TABLE Customer
 (cno CHAR(3),
 balance NUMBER(5) DEFAULT 0);

Begin Note
�In this example, if “DEFAULT 0” were not used, balance would default to NULL if no value for balance
was supplied. NULL means “empty” and is Oracle’s way of signifying no value is present.
End Note

We could have also used other datatypes for the attributes. For example, another common character
datatype is VARCHAR2(n), which is a variable-length character string of length n. (Again, we will go into
more in depth on datatypes later in the chapter.)

Example 2:
In this example, we are creating a table of names:

CREATE TABLE Names
 (name VARCHAR2(20));

This table, Names, has one attribute called, “name.” “name” is of datatype VARCHAR2 (which means
varying length character), and each “name” in the table can have a maximum size of 20 characters.

Begin Note
�Older versions of SQL used a datatype called VARCHAR, but Oracle now uses and recommends the use
of VARCHAR2.
End Note

2.2.1  Inserting Values into a Created Table
Values may be inserted into a created table using several methods. We will illustrate two of the three common
ways to populate tables:

•  INSERT INTO .. VALUES
•  INSERT INTO .. SELECT
•  SQLLOADER (for bulk loading of larger tables -- we do this later)

In this chapter we will look at INSERT INTO .. VALUES and INSERT INTO .. SELECT. We will discuss
SQLLOADER later in the text because SQLLOADER is not a command per se, but rather a special Oracle
procedure for loading tables.

2.2.1.1  INSERT INTO .. VALUES
The INSERT INTO with the VALUES option is a way of creating one row of a table. The following example
inserts one row into the Names table:

INSERT INTO Names
VALUES (‘Joe Smith’);

50

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

where

•	 INSERT is the name of the command.

•	 INTO is a necessary keyword.

•	 “Names” is the name of the existing table.

•	 VALUES is another necessary keyword.

•	 ‘Joe Smith’ is a string of letters in agreement with the datatype.

‘Joe Smith’ is surrounded by single quotes. “Joe Smith” would be invalid.

If you created a table with n attributes, you usually would have n values in the INSERT INTO ..
VALUES part of the command. For example, if you have created a table called Employee, like this:

CREATE TABLE Employee
	 (name	 VARCHAR2 (20),
	 address	 VARCHAR2 (20),
	 employee_number	 NUMBER (3),
	 salary	 NUMBER (6,2));

then the INSERT INTO .. VALUES to insert a row would match column for column and would look like this:

INSERT INTO Employee
VALUES (‘Joe Smith’, ‘123 4th St.’, 101, 2500);

The values in the VALUES part of the statement correspond to the attribute names by their ordering as
defined by the way the table was created. Character types must be enclosed in single quotes and numeric
types are not in quotes. ‘Joe Smith’ corresponds to the attribute, name, and 2500 corresponds to salary. An
INSERT like the following is incorrect because it does not include all four attributes of the Employee table:

INSERT INTO Employee
VALUES (‘Joe Smith’, ‘123 4th St.’);

However, if you do not have data values for all four attributes of the Employee table, and you wish to
insert values into only two of the four attributes, you can name the attributes you want to insert and provide
values for only those attributes you name. For example, you can use an INSERT like this:

INSERT INTO Employee (name, address)
VALUES (‘Joe Smith’, ‘123 4th St.’);

In this case, the inserted row will contain NULL values for the attributes you did not use.

An INSERT like the following is also incorrect because it does not have the values in the same order as
the definition of the table:

INSERT INTO Employee
VALUES (2500, ‘Joe Smith’, 101, ‘123 4th St.’);

If the data had to be specified in this order, the statement could be corrected by specifying the column
names like this:

INSERT INTO Employee (salary, name, employee_number, address)
VALUES (2500, ‘Joe Smith’, 101, ‘123 4th St.’);

The following INSERT would also be legal if the address and the salary were unknown when the row
was created and if the address and salary attributes allowed nulls:

INSERT INTO Employee
VALUES (‘Joe Smith’, null, 101, null);

51

A Practical Guide to Using SQL in Oracle

Begin Note
�If you use non-numeric datatypes like CHAR (fixed character size) or VARCHAR2 (variable character
size), you must use single quotes in the INSERT statement. If you use numbers, you should not use
quotes. Oracle will convert character strings to numbers, but it is never good to let a system do some-
thing you should do yourself.
End Note

2.2.1.2  INSERT INTO .. SELECT
With the INSERT INTO ..VALUES option, you insert only one row at a time into a table. With the INSERT
INTO .. SELECT option, you may (and usually do) insert many rows into a table at one time. The syntax of
the INSERT INTO .. SELECT is:

INSERT INTO Table-name
 “SELECT clause”

For example, the following statement will insert all the values from the table Customer into another
table called Newcustomer:

INSERT INTO Newcustomer
 SELECT	 *
 FROM	 Customer;

Before using this above INSERT INTO .. SELECT statement, you would have had to first create the
Newcustomer table. Although the attributes of Newcustomer do not have to be named exactly what
they are named in Customer, the datatypes and sizes have to match. The size of the attributes you are
inserting (the size of the attributes of Newcustomer) have to be at least as big as the size of the attributes
of Customer.

You may limit the SELECT and load to less than the whole table -- fewer rows or columns, as necessary.
Following are some examples of restricted SELECTs for the INSERT statement:

Suppose you had a table with only one attribute, a customer name, which was created as follows:

CREATE TABLE Namelist
	 (customer_name VARCHAR2(20));

Assume a second table existed with the following structure:

Customer1 (cname, cnumber, amount) where cname is VARCHAR2(20).

You can populate the Namelist table with the cname from the Customer1 table as follows:

INSERT INTO Namelist
 SELECT	 cname
 FROM	 Customer1;

This would copy all the names from Customer1 to Namelist. But, you do not have to copy all the names
from Customer1 because you can restrict the SELECT as illustrated in the following example:

INSERT INTO Namelist
 SELECT	 cname
 FROM	 Customer1
 WHERE	 amount > 100

As with the INSERT INTO .. VALUES, if you create a table with n attributes, you usually would have n
values in the INSERT INTO .. SELECT in the order of table definition. Suppose you have the following table:

Employee (name, address, employee_number, salary)

52

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

Then suppose you wanted to load a table called Emp1 from Employee with the following attributes,
addr, sal, and empno, which stand for address, salary, and employee number, respectively:

Emp1 (addr, sal, empno)

As with INSERT INTO .. VALUES, the INSERT INTO .. SELECT with no named attributes must match
column for column and would look like the following:

INSERT INTO Emp1
 SELECT	 address, salary, employee_number
 FROM	 Employee;

The following INSERT would fail because the Employee table has four attributes while the Emp1 table
has only three:

INSERT INTO Emp1
 SELECT * FROM Employee;

The following INSERT would also fail because the attribute order of the SELECT must match the order
of definition of attributes in the Emp1 table:

INSERT INTO Emp1
 SELECT	 address, employee_number, salary
 FROM	 Employee;

As illustrated in the last INSERT INTO .. SELECT example, you can load fewer attributes than the whole
row of the Emp1 table using named attributes in the INSERT with a statement like:

INSERT INTO Emp1 (address, salary)
 SELECT	 address, salary
 FROM	 Employee;

However, this would leave the other attribute, employee_number, with a value of NULL or with a default
value. Therefore, although loading less than a “full row” is syntactically correct, you must be aware of the result.

One final point: INSERT INTO .. SELECT could succeed if the datatypes of the SELECT matched the
datatypes of the attributes in the table to which you are INSERTing. For example, if you had another table
called Emp2 with name, address as attributes (both defined as VARCHAR2), and if you executed the
following, the statement could succeed, but you would have an address in a name attribute and vice versa:

INSERT INTO Emp2
 SELECT	 address, name
 FROM	 Employee;

Begin Note
�We say “could” here because there are ways to prevent integrity violations of this type, but we have not
introduced them yet.
End Note

Be careful with this INSERT INTO .. SELECT statement. Unlike INSERT INTO ..VALUES, which inserts
one row at a time, you almost always insert multiple rows with INSERT INTO .. SELECT. If types match, the
insert will take place regardless of whether it makes sense or not.

Finally, the previous two statements (CREATE TABLE and INSERT INTO) may be combined for creat-
ing backup copies of tables like this:

CREATE TABLE Course_copy AS
SELECT * FROM COURSE

53

A Practical Guide to Using SQL in Oracle

You will get:

Table created.

2.2.2  The UPDATE Statement
Another common statement used for setting/changing data values in tables is the UPDATE statement. As
with the INSERT INTO .. SELECT option, you often update more than one row at a time with UPDATE. To
illustrate the UPDATE statement, you may create a table called Customer2, like this:

CREATE TABLE Customer2
 (cno CHAR(3), balance NUMBER(5), date_opened DATE);

Now suppose some values are inserted into the table using one of the above techniques. And then
suppose you would like to set all balances in the new table to zero. You can do this with an UPDATE state-
ment, as follows:

UPDATE Customer2
SET balance = 0;

This statement sets all balances in all rows of the table to zero, regardless of their previous value.

Begin Warning
�Beware, this can be a dangerous. Later in the chapter we will discuss a method to safeguard against
accidental misuse using the ROLLBACK statement.
End Warning

It is often useful and appropriate to include a WHERE clause on the UPDATE statement so values are
set selectively. For example, the updating of a particular customer in our new table, Customer2, might be
done with the following statement:

UPDATE	 Customer2
SET	 balance = 0	 -- this updates only one customer
WHERE	 cno = 101;

This would update only customer 101’s row(s). You could also set specific balances to zero with other
criteria in the WHERE clause with a statement like the following:

UPDATE	 Customer2
SET	 balance = 0
WHERE	 date > ‘01-JAN-23’;

However, in this last example, multiple rows might be updated.

2.2.3  The DELETE Statement
The DELETE statement is used to delete rows from tables. A sample of syntax for the DELETE statement is:

DELETE FROM Table
	 WHERE (condition)

The (condition) determines which rows to delete.

Begin Warning
�With UPDATE and DELETE, multiple rows can be affected; therefore, these can be dangerous commands.
Be careful when using them and please wait until you learn to use ROLLBACK before applying these
statements.
End Warning

54

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

An example of a multi-row delete from our sample Customer2 table might be:

DELETE FROM	 Customer2
WHERE	 balance < 10;

or

DELETE FROM	 Customer2
WHERE	 date_opened < ‘01-JAN-17’;

2.3  Deleting a Table
To remove a table from the database, you would use the DROP TABLE command as follows:

DROP TABLE Table_name;

Once you drop a table, you cannot bring the table or its data back. DROPping tables cannot be undone.

2.4  ROLLBACK, COMMIT, and SAVEPOINT
When we make modifications to our database -- when we use one or more INSERT, SELECT, DELETE, or
UPDATE statements -- we perform a transaction. A transaction is defined as “a logical unit of work.” A trans-
action ends with a COMMIT statement (either implied or explicit). There are statements containing implied
COMMITs; i.e., if you execute these statements, it comes with a COMMIT; there is also an explicit COMMIT
statement.

If you make a mistake in a transaction not including an implied COMMIT, you can undo whatever modifi-
cation you have made to your database with a ROLLBACK statement. In this section we will discuss how and
when to perform a COMMIT and a ROLLBACK, as well as discuss the conditions for undoing a transaction.

All transactions have a beginning and an end. A common beginning point for a transaction is when you
log on to the database. Provided you have not issued a command with an implied COMMIT, the end point of
the transaction is when you sign off. You may end a transaction by:

•	 Logging off of your database session (an implied COMMIT)

•	 Issuing a command containing an implied COMMIT (like the DROP TABLE command discussed
in the previous section)

•	 Issuing an explicit COMMIT statement

•	 Executing a ROLLBACK statement

If you issue a COMMIT during a session, your transaction ends at that point and a new one begins. Data
definition commands contain implicit COMMITs -- they end the current transaction and start a new one.
Data definition commands we have seen are: CREATE TABLE and DROP TABLE. If either of these two
commands are issued, an implied COMMIT ensues, the current transaction ends and a new transaction
begins. Several transactions may take place within a single session. A “session” is bounded by when you log
in to SQL and when you log off.

COMMIT and ROLLBACK are explicit transaction-handling statements to allow you to divide your work
into separate transactions without signing off and on. Suppose you had a table of values and you deleted
some of the rows. You can undo the delete action by issuing a ROLLBACK statement. For example, suppose
while updating the Customer table, you issued the following DELETE statement:

55

A Practical Guide to Using SQL in Oracle

DELETE FROM Customer
WHERE balance < 500;

This deletes all rows in the Customer table where balances are less than 500. Then, after the DELETE
executes, you find your boss actually asked you to delete customers where the balance was less than 50, not
500. You can ROLLBACK the previous statement with:

ROLLBACK;

The ROLLBACK command resets the Customer table to whatever the values were at the beginning
of the transaction. If you are sure you have successfully executed the correct command, you may execute:

COMMIT;

and the table will not be “ROLLBACK-able.” After the COMMIT, the transaction is history.

The ROLLBACK command will not work under certain conditions because some statements contain
implied COMMITs. Implied COMMITs are:

•	� When you use Data Definition Language (DDL) commands (DDL commands define or delete
database objects). Examples of such commands include CREATE VIEW, CREATE TABLE,
CREATE INDEX, DROP TABLE, RENAME TABLE, ALTER TABLE.

•	 When you log off of SQL, implicitly COMMITting your work.

For valuable tables, an explicit backup (or two) should be made and permissions for update and delete
should be judiciously managed by the table owner. (We demonstrated backing-up tables earlier in the
chapter.)

As an intermediate COMMIT/ROLLBACK action, you can also name a transaction milestone called a
SAVEPOINT. For example, you can use the following command to mark a point in a transaction with the
name, point1:

SAVEPOINT point1

You can then ROLLBACK to point1 with the following statement:

ROLLBACK TO SAVEPOINT point1

The naming of SAVEPOINTs allow you to have several ROLLBACK places in a transaction -- “milestones,”
if you will. These milestones allow partial ROLLBACKs. COMMIT is much stronger than a SAVEPOINT
because it commits all actions and wipes out the SAVEPOINTs if there are any.

Following is an example of a transaction that includes a SAVEPOINT, ROLLBACK, and COMMIT:

Suppose we had a table, CustA, populated with attributes name and balance, defined as VARCHAR2(20)
and NUMBER(5,2), respectively. Further suppose we type:

SELECT	 *
FROM	 CustA;

And we get:

NAME	 BALANCE
----------	 ----------------
Mary Jo	 25.53
Sikha	 44.44
Richard	 33.33

56

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

If we insert another row into CustA, as follows:

INSERT INTO	 CustA
VALUES (‘Brenda’, 40.02);

We will get the following message:

1 row created.

We can now use this as a milestone, creating a SAVEPOINT by typing:

SAVEPOINT pointA;

We will then get the following message:

Savepoint created.

Now if we type:

SELECT	 *
FROM	 CustA;

We will get:

NAME	 BALANCE
----------	 ----------------
Mary Jo	 25.53
Sikha	 44.44
Richard	 33.33
Brenda	 40.02

If we type:

DELETE FROM	 CustA
WHERE	 balance < 35;

We will get the following:

2 rows deleted.

If we type:

SELECT	 *
FROM	 CustA;

We will get:

NAME	 BALANCE
----------	 ---------------
Sikha	 44.44
Brenda	 40.02

We could make this our next milestone, calling it pointB, by typing:

SAVEPOINT pointB;

Again, we will get the following message:

Savepoint created.

57

A Practical Guide to Using SQL in Oracle

Now if we type:

DELETE FROM CustA;

We will get this message:

2 rows deleted.

If we now type:

SELECT	 *
FROM	 CustA;

We will get this:

no rows selected

If we feel we have made a mistake, we can, at this point, ROLLBACK the transaction as follows:

ROLLBACK TO SAVEPOINT pointB;

We will get the following message:

Rollback complete.

If we now type:

SELECT	 *
FROM	 CustA;

We will get:

NAME	 BALANCE
----------	 ----------------
Sikha	 44.44
Brenda	 40.02

We can update CustA by typing:

UPDATE	 CustA
SET BALANCE =	 55.55
WHERE	 name LIKE ‘Si%’;

This will give us the following message:

1 row updated.

If we now type:

SELECT	 *
FROM	 CustA;

We will get:

NAME	 BALANCE
----------	 ----------------
Sikha	 55.55
Brenda	 40.02

58

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

If we want to now rollback to pointA, we type:

ROLLBACK TO pointA;

We will get the following message:

Rollback complete.

If we now type:

SELECT	 *
FROM	 CustA;

We will get:

NAME	 BALANCE
----------	 ----------------
Mary Jo	 25.52
Sikha	 44.44
Richard	 33.33
Brenda	 40.02

At this point, if we COMMIT, we will basically wipe out the SAVEPOINTs and won’t be able to ROLLBACK
again. Suppose we issue a COMMIT:

COMMIT;

We get the following message:

Commit complete.

This completes the transaction in terms of making it impossible to ROLLBACK because the transaction
is ended.

Most database situations occur in a multi-user environment. For example, suppose a CustomerN table
exists with the following attributes:

CustomerN (name, address, credit_limit, balance)

Now suppose there are two departments using the CustomerN table: credit and billing. In a database,
data is shared. Both the credit and billing departments use the CustomerN table. Now suppose we have
two users: Richard and Sikha. Richard works for the credit department and Sikha works for billing. At the
same time, Richard is updating the CustomerN table with new credit limits for some customers and Sikha
is checking balances and credit limits.

Here is the point: Although both are using the same table, as Richard updates CustomerN rows, Sikha
will not see Richard’s changes until Richard COMMITs the changes (ends his transaction). The judicial use
of COMMIT is an underlying principal of database and shared tables.

2.5  The ALTER TABLE Statement
The ALTER TABLE statement is used to alter the structure of a table. With the ALTER TABLE statement
you can add/delete columns from tables and/or alter the size or datatypes of columns.

The simplified syntax to add a column to an existing table would be:

ALTER TABLE Tablename
ADD	 column-name datatype

59

A Practical Guide to Using SQL in Oracle

For example, the following will add the address attribute (of datatype VARCHAR2) to the Customer
table created earlier in this chapter:

ALTER TABLE	 Customer
ADD address VARCHAR2(20);

To change a column’s type, the simplified syntax would be:

ALTER TABLE tablename	
MODIFY column-name new_datatype

For example, the following will modify the balance attribute of the Customer table, making it a size of
up to eight digits with two decimal places:

ALTER TABLE	 Customer
MODIFY	 balance NUMBER (8,2);

We can only make attributes larger and cannot violate any existing data with this statement.

Using the ALTER TABLE statement, we can define or change a default column value, enable or disable
integrity constraints, manage internal space, and do some other useful things we will cover later.

Begin Note
�If you modify a column, you can only make it bigger, not smaller, unless there is no data; all the data in
the existing database must conform to your modified type.
�If you add a column, it will contain null values until you put data into it with an UPDATE or INSERT
command to change the values in the new column.
End Note

A little while ago you created a backup copy of the Course table like this:

CREATE TABLE Course_copy
AS SELECT	 * FROM COURSE;

Now, we’ll use the backup to provide an example of ALTER TABLE.

First, execute this command:

DESC Course_copy

This will give:

Name	 Null?	 Type
-------------------------	 -------- 	 --------------------------------
COURSE_NAME		 VARCHAR2(20)
COURSE_NUMBER	 NOT NULL 	 VARCHAR2(8)
CREDIT_HOURS		 NUMBER(38)
OFFERING_DEPT		 VARCHAR2(4)

Now, to alter the table, type:

ALTER TABLE	 Course_copy
MODIFY	 offering_dept VARCHAR2(6);

This will give:

Table altered.

60

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

Now,

DESC Course_copy

Will give:

Name	 Null?	 Type
------------------------- 	 -------- 	 --------------------------------
COURSE_NAME		 VARCHAR2(20)
COURSE_NUMBER	 NOT NULL 	 VARCHAR2(8)
CREDIT_HOURS		 NUMBER(38)
OFFERING_DEPT		 VARCHAR2(6)

Now,

SQL> ALTER TABLE Course_copy
 MODIFY offering_dept CHAR(2)
SQL> /

Will give:

modify offering_dept char(2)
	 *
ERROR at line 2:

ORA-01441: cannot decrease column length because some value is too big

2.6  Datatypes
A datatype of an attribute defines the allowable values as well as the operations we can perform on the attri-
bute. We commonly use the NUMBER datatype for numbers and the CHAR and VARCHAR2 datatypes for
character strings. In this section, we will explore these and other commonly and uncommonly used datatypes.

2.6.1  Common Number Datatypes
The most commonly used numeric datatypes in Oracle are NUMBER and INTEGER. The NUMBER datatype,
with no parentheses, defaults to a number of up to 38 digits long with 8 decimal places. NUMBER may also
be defined as having some maximum number of digits, such as NUMBER(5). Here, the (5) is referred to as
the “precision” of the datatype and may be from 1 to 38. If a second number is included in the definition, for
example NUMBER (12,2), the second number is called the “scale.” The second number defines how many
digits will come after a decimal point. Here, with NUMBER (12,2) we may have up to ten digits before the
decimal point and two after.

A very common datatype used in programming languages is type INTEGER. INTEGER holds whole
numbers and is equivalent to NUMBER(38).

Usually, you enter a precision and/or a scale for your numbers with entries such as NUMBER(3) or
NUMBER(6,2). The NUMBER(3) implies you will have three digits and no decimal places. NUMBER(6,2)
means the numbers you store will be similar to 1234.56 or 12.34, with a decimal before the last two digits in
a field with a maximum of six numbers overall.

Here is an example to illustrate precision and scale with a numeric attribute. Type the following:

CREATE TABLE Testnum (x NUMBER(5,2));

61

A Practical Guide to Using SQL in Oracle

Here we are creating a one column table with a numeric column called “x.”

INSERT INTO Testnum VALUES (20);
INSERT INTO Testnum VALUES (200);
INSERT INTO Testnum VALUES (2000);

The first two INSERTs work fine, but the last INSERT gives an error:

INSERT INTO Testnum VALUES (2000);
	 *
ERROR at line 1:
ORA-01438: value larger than specified precision allows for this column
-

Then try typing:

INSERT INTO Testnum VALUES (200.12);
INSERT INTO Testnum VALUES (200.123);

Now,

SELECT *
FROM Testnum;

Will give:

	 X

	 20
	 200
	 200.12
	 200.12

If a number is inserted that is too large for the precision, an error results. If a number with too many
decimal places is added, the decimal values beyond the scale are rounded up automatically, as shown by the
following inserts:

INSERT INTO Testnum VALUES (123.99778);
INSERT INTO Testnum VALUES (333.333);
INSERT INTO Testnum VALUES (555.499999);
INSERT INTO Testnum VALUES (666.500004);

Now,

SELECT *
FROM Testnum;

Gives:

	 X

	 20
	 200
	 200.12
	 200.12
	 124
	 333.33
	 555.5
	 666.5

62

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

In addition to the above numeric datatypes, there are other specialty numeric types (SMALLINT,
BINARY DOUBLE, and others). There are also the FLOAT datatypes, which allow large exponential numbers
to be stored, but they are rarely used. Float datatypes include FLOAT, REAL, and DOUBLE PRECISION.

2.6.2  CHAR Datatype (commonly used)
CHAR (pronounced “care”) is a fixed-length character datatype. This datatype is normally used when the
data will always contain a fixed number of characters. For example, suppose major codes are always exactly
four characters long; they should be encoded as CHAR(4). Social security numbers are also good candi-
dates for this datatype because they always contain nine digits, so CHAR(9) can be used. Although Social
Security (SS) numbers are digits, they are not used for calculation; hence, SS numbers may be stored as
characters. In a field defined as CHAR, if the requisite number of characters is not inserted when loading
data, the attribute will be padded on the right with blanks. For example, if we defined the social security
number as CHAR(10) instead of CHAR(9), there would be one blank space on the right of every 9-digit social
security number character string. The storage size limits for attributes of the CHAR datatype are from 1 to
2000 bytes.

2.6.3  VARCHAR2 Datatype (very commonly used)
As we mentioned earlier in the chapter, VARCHAR2 (pronounced “var-care”) is Oracle’s variable-length char-
acter datatype when loading data. For this datatype, maximum lengths are specified, as in VARCHAR2(20),
for a string of from zero to 20 characters. When varying sizes of data are stored in an Oracle VARCHAR2,
only the necessary amount of storage is allocated. This practice makes the internal storage of Oracle data
more efficient. In fact, some Oracle practitioners suggest using only VARCHAR2(n) instead of CHAR(n). The
minimum storage size for VARCHAR2 is 1 byte; the maximum size is 4000 bytes. Since there is no default
size for VARCHAR2, you must specify a size.

Begin Note
�Older versions of Oracle and other SQLs used VARCHAR (without the “2”) instead of VARCHAR2.
VARCHAR may not be supported in future versions, so we advise you to use VARCHAR2 instead.
End Note

2.6.4  NCHAR and NVARCHAR2 Datatypes (rarely used)
NCHAR stores fixed length character strings, and NVARCHAR2 stores variable length character strings,
both of which are Unicode datatypes corresponding to the national character set. The character set of
NCHAR and NVARCHAR2 datatypes are specified at database creation time. The maximum length of an
NCHAR column is 2000 bytes, and the maximum size of a NVARCHAR2 column is 4000 bytes.

Unicode is an effort to enable encoding of every character in every known written language. Oracle
database users with global applications may need to use Unicode data for non-English characters.

2.6.5 � LONG, RAW, LONG RAW, and BOOLEAN Datatypes
(rarely used except in very specific circumstances)

The LONG datatype is similar to VARCHAR2 and has a variable length of up to 2 gigabytes. However, there
are some restrictions in the access and handling of LONG datatypes:

•	 Only one LONG column can be defined per table.

•	 LONG columns may not be used in subqueries, functions, expressions, WHERE clauses, or indexes.

63

A Practical Guide to Using SQL in Oracle

A RAW or LONG RAW datatype is used to store binary data such as graphics characters or digitized
pictures. The maximum size for RAW is 2000 bytes while the maximum size for LONG RAW is 2 gigabytes.

In Oracle, there is also a BOOLEAN datatype with values TRUE, FALSE, and NULL, but it is not often
used.

Begin Note
�The BOOLEAN datatype is only available when running the procedural language (PL/SQL). We will
discuss PL/SQL in Chapter 11.
End Note

2.6.6  �Large Object (LOB) Datatypes (rarely used
except in very specific circumstances)

As of Oracle 8, four new large object (LOB) datatypes are supported: BFILE and three LOB datatypes --
BLOB, CLOB, and NCLOB. BFILE is an external LOB datatype that only stores a locator value pointing to
the external binary file. BLOB is used for binary large objects, CLOB is used for large character objects, and
NCLOB is a CLOB datatype for multi-byte character sets.

Data in the BLOB, CLOB, or NCLOB datatypes is stored in the database, although LOB data does not
have to be stored with the rest of the table. Single LOB columns can hold up to 4 gigabytes in length and
multiple LOB columns are allowed per table. In addition, Oracle allows you to specify a separate storage area
for LOB data, greatly simplifying table sizing and data administration activities for tables containing LOB
data. LOB datatypes consume large quantities of memory.

2.6.7  Abstract Datatypes (sometimes used, but uncommon)
In Oracle, you can also define and use abstract datatypes. An abstract datatype defines a range of allowable
values as well as operations that can be performed. An abstract datatype (ADT) defines the operations
explicitly (in methods or procedures) and should allow data to be accessed only by those methods. ADTs are
created with the CREATE TYPE statement.

In addition to ADTs, the CREATE TYPE command allows you to create more complicated datatypes.
For example, Oracle’s collection types allow you to put a table within a table or allow a varying array in a
table. Both of these concepts are non-third normal form (non-3NF) constructions and should be used only
with a strong need to violate the 3NF assumption for relational database. These more exotic datatypes also
may present performance problems for large databases.

Begin Note
�A complete treatment of CREATE TYPE and abstract datatypes is a more advanced topic we will discuss
later in this text. We mention CREATE TYPE here only to make you aware of its existence as an Oracle
datatype.
End Note

2.6.8  The XML Datatype
XMLType has been created by Oracle to handle XML data. XML is a standardized textual coding technique
used to exchange data over the internet. Why does Oracle need an XML datatype? The answer is some
developers create and exchange data as XML. If Oracle did not have an XML datatype, then to handle the
XML data in an Oracle database, there would have to be a bridge built to transform the XML data to a
common SQL datatype or vice-versa. As with other datatypes, XMLType can be used as a datatype for a
column of a table or view. The maximum size of an XMLType attribute is 4 gigabytes.

64

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

Using XML within SQL is beyond the scope of this material. Using XML involves data definition docu-
ments, style sheets, and other ancillary tools. The conversion of data to and from XML involves using CLOB
datatypes in SQL and SQL procedures specifically designed to handle this new and exciting datatype.1

2.6.9 � The DATE Datatype and Type Conversion
Functions (commonly used)

A DATE datatype allows the storage and manipulation of dates and times. The time part of the datatype is
often ignored, but it is defined as part of the datatype. There are functions to add, take differences between
dates, convert to a four digit year, and so on. DATE datatypes are defined in a manner similar to what we
have seen. Here is an example of a table containing a DATE datatype:

CREATE TABLE Date_example
 	 (day_test	 DATE,
	 amount 	 NUMBER(6,2),
	 name	 VARCHAR2(20));

Data is entered into the day_test attribute, in the character format ‘dd-Mon-yy,’ which automatically
converts the character string to a date format.

Begin Note
�The format of the DATE datatype can be changed by the DBA (Data Base Administrator), but dd-Mon-
yy is commonly used.
End Note

Some examples of inserts for the Date_example table would be:

INSERT INTO date_example (day_test) VALUES (‘10‑oct‑23’)	 /* valid */
�INSERT INTO date_example (day_test) VALUES (‘10‑OCT‑23’)	 /* valid (month not case
	 sensitive) */
INSERT INTO date_example (day_test) VALUES (10‑oct‑23)	 /* invalid (needs quotes) */
INSERT INTO date_example (day_test) VALUES (sysdate)	 /* valid (system date) */
INSERT INTO date_example (day_test) VALUES (‘10‑RWE‑23’)	 /* invalid (bad month) */
INSERT INTO date_example (day_test) VALUES (‘32‑OCT‑23’)	 /* invalid (bad day) */
INSERT INTO date_example (day_test) VALUES (‘31‑OCT‑23’)	 /* valid */
INSERT INTO date_example (day_test) VALUES (‘31‑SEP‑23’)	 /* invalid (bad day --
	 Oracle keeps up with the correct days per month) */

For other than “standard” dates in the form ‘dd-Mon-yy’, the TO_DATE function can be used to insert
values in other ways. The TO_DATE function has two arguments: TO_DATE (a,b), where “a” is the string you
are using to enter the date and “b” is a recognizable Oracle character format.

For example, to insert the date ‘2-1-23’ in the format ‘mm-dd-yy’ you would type:

INSERT INTO Date_example (day_test)
VALUES (TO_DATE (‘2‑1‑23’, ‘mm-dd‑yy’))

Likewise, to enter the date ‘2/1/2023’ in the format ‘mm/dd/yyyy,’ you would type:

INSERT INTO Date_example(day_test)
VALUES (TO_DATE (‘2/1/2023’, ‘mm/dd/yyyy’))	

To convert a DATE datatype to a character datatype, another function, TO_CHAR is used. TO_CHAR is
useful for displaying dates in formats other than the standard one, for example, if you type:

INSERT INTO Date_example
VALUES (‘21-OCT-23’,NULL, NULL);

65

A Practical Guide to Using SQL in Oracle

And then you type:

SELECT	 *
FROM Date_example;

You will get:

DAY_TEST 	 AMOUNT NAME
--------- ----------	 -------------------------
21-OCT-23

And if you type:

SELECT	 TO_CHAR(day_test,’mm/dd/yy’) DDATE
FROM	 Date_example;

This will give:

DDATE

10/21/23

And if you type:

SELECT	 TO_CHAR(day_test,’Month dd, yyyy’) DATE1
FROM	 Date_example;

This will give:

DATE1

October 21, 2023

As mentioned previously, the DATE datatype may be used to store times. Consider an example in which
we have expanded the input date to include the hour (using a 24-hour clock) and minute. Suppose we create
a table like this:

CREATE TABLE Date_test2 (dte DATE);

We then INSERT some data as follows:

INSERT INTO Date_test2
VALUES (TO_DATE(‘2-11-2023 16:05’,’mm-dd-yyyy hh24:mi’))

A simple SELECT will show only the day, month, and year, as follows:

SELECT	 dte
FROM	 Date_test2;

We then get:

DTE

11-FEB-23

The other stored information can be fully displayed using the TO_CHAR function:

SELECT	 (TO_CHAR(dte,’dd-Mon-yyyy hh:mi:ss’)) dtime
FROM	 Date_test2;

66

M
or

e
“B

eg
in

ni
ng

”
SQ

L
Co

m
m

an
ds

 a
nd

 S
ta

te
m

en
ts

  

Ch
ap

te
r 2

Will give:

DTIME

11-Feb-2023 04:05:00

We can specify other data like this:

SELECT	 (TO_CHAR(dte,’dd-Mon-yyyy hh:mi:ss j q w PM cc’)) dtime
FROM	 Date_test2;

We get:

DTIME
--
11-Feb-2023 04:05:00 1 2 PM 21

The format part of the TO_CHAR uses these formatting characters:

•	 The q is the quarter of the year (1st quarter).

•	 The w is the week of the month (2nd week).

•	 The PM signifies PM if PM and AM if AM.

•	 The cc specifies the century (21st).

2.6.9.1  Entering Four-Digit Years
There will often be times when we would want to enter and display four digit years. If there is the possibil-
ity of confusion when entering dates, then entering 4-digit years is safe and proper. To enter years as four
digits, we use TO_DATE and a format to match the year part, for example:

INSERT INTO	 Date_example (day_test)
VALUES (TO_DATE (‘03-21-2023’,’mm-dd-yyyy’));

Now,

SELECT	 *
FROM	 Date_example
WHERE	 TO_CHAR(day_test,’yyyy’) = ‘2023’

Will give:

DAY_TEST	 AMOUNT NAME
--------- ----------	 --------------------
21-MAR-23

SELECT	 TO_CHAR (day_test,’Month dd, yyyy’) date2
FROM	 Date_example
WHERE	 TO_CHAR(day_test,’yyyy’) = 2023;

Will give:

DATE2

March 21, 2023

There are also two handy functions to deal with dates: MONTHS_BETWEEN and ADD_MONTHS.
Following are examples of these functions.

67

A Practical Guide to Using SQL in Oracle

Today’s date can be found with a statement like this:

SELECT	 SYSDATE
FROM	 Dual;

Dual is a dummy table that always returns one row. The Dual table and a query like the above are used
for testing functions such as “sysdate” and/or variations such as TO_CHAR(SYSDATE, ‘mm-day-yyyy’), as in:

SELECT	 TO_CHAR(SYSDATE, ‘mm-Day-yyyy’)
FROM	 Dual;

Now, to show how the MONTHS_BETWEEN function works, consider this example:

SELECT	 SYSDATE
FROM	 Dual;

This will give:

SYSDATE

11-APR-20

To find how many months there are from today back to February 2, 2014, you may use:

SELECT	 MONTHS_BETWEEN(SYSDATE, ‘02-feb-14’)
FROM	 Dual;

Will give:

MONTHS_BETWEEN(SYSDATE,’02-FEB-20’)

	 74.3097708

And, for the ADD_MONTHS function, consider this example:

SELECT	 ADD_MONTHS(SYSDATE, 4) four_months_out
FROM	 Dual;

would give:

FOUR_MONTHS_OUT

11-AUG-20

Finally, to change the default date format, the ALTER SESSION statement may be used:

ALTER SESSION SET nls_date_format = ‘dd-mon-yyyy’;

Footnote
1 �For a brief introduction to SQL and XML, see Earp, Richard Walsh and Bagui, Sikha Saha, Advanced SQL Functions in Oracle 10g, Wordware
Publishing, Inc., 2006, Chapter 9.

68 Exercises for Chapter 2
As you do the exercises, it is a good idea to copy/paste your query as well as your query result into a word
processor (review the SPOOL command in Chapter 1).

2-1. a. Create a table called Cust with a customer number fi eld as a fi xed-length character string of
3, an address fi eld with a variable character string of up to 20, and a numeric balance of fi ve
digits (you choose the attribute names).

 b. Insert values into the table with INSERT INTO .. VALUES. Use the form of INSERT INTO ..
VALUES requiring you to have a value for each attribute; therefore, if you have a customer
number, address, and balance, you must insert three values with INSERT INTO .. VALUES.

 c. Create at least fi ve rows (rows in the table) with customer numbers 101 to 105 and balances of
200 to 2000.

 d. Display the table with a simple SELECT.

2-2. Show a listing of the customers from Exercise 2-1 in balance order (high to low) and use ORDER
BY in your SELECT.

2-3. From the Student-Course database, use the Student table to display each student’s sname,
class, and major for freshmen or sophomores (class <= 2) in descending order of class (note: If
you haven’t created the synonyms of all the tables in the Student-Course database as per the
Chapter 1 exercises, you will need to use rearp.Student instead of Student in the query).

2-4. From your Cust table, show a listing of only the customer balances in ascending order where
balance > 400. You can choose some other constant if you want, for example, balance <= 600. The
results will depend on your data. Make sure you use the attribute names you chose.

2-5. a. Create another table with the same types as Cust but without the customer address. Call
this table Cust1. Use attribute names cnum for customer number and bal for balance. Load
the table with the data you have in the Cust table with one less row. Use an INSERT INTO ..
SELECT with appropriate attributes and an appropriate WHERE clause.

 b. Display the resulting table. If it appears ok, COMMIT your work.

 c. Assuming you have COMMITted in step b, delete about half of your rows from Cust1 (“DELETE
FROM Cust1 WHERE bal < some value” [or bal > some value, etc.]).

 d. Show the table after you have deleted the rows.

 e. Undelete the rows with ROLLBACK.

 f. Display the table with the reinstated rows.

 g. Delete one row from the Cust1 table and SAVEPOINT point1. Display the table.

 h. Delete another row from the table and SAVEPOINT point2. Display the table.

 i. ROLLBACK to SAVEPOINT point1, display the table, and explain what is happening.

 j. Try to ROLLBACK to SAVEPOINT point2, see what happens, and explain it.

2-6. a. Using the Cust1 table from the Exercise 2-5, COMMIT the table as it exists.

 b. ALTER the table by adding a date_opened column of type date.

 After each of the following, display the table.

 c. Set the date_opened value in all rows to ‘01-JAN-23’ and COMMIT.

 d. Set all balances to zero, display the table, then ROLLBACK the action and display again.

 e. Set the date_opened value of one of your rows to ‘21-OCT-23’ and display.

 f. Change the datatype of the balance attribute in Cust1 to number (8,2). Display the table. Set
the balance for one row to 888.88 and display the table again.

69 g. Try changing the datatype of balance to NUMBER (3,2). What happens? Why does this
happen?

 h. Change the values of all dates in the table to the system date using SYSDATE.

 i. When you have fi nished the exercises (but be sure you are fi nished), “DROP TABLE Cust1” to
delete the table. Use SELECT * FROM tab to be sure you dropped Cust1.

For the next three problems, use the Student table from our Student-Course database.

2-7. Using the Student table, list the sname, major, and class of all students who are ART majors and
juniors.

2-8. Using the Student table, list the sname, major, and class of all students who are ART majors or
juniors.

2-9. From the Student table, list the sname, major, and class of all sophomores, juniors and seniors.
Use the BETWEEN operator for this.

