
173

Chapter 9
Correlated Subqueries

A correlated subquery is one in which:

(a) There is a subquery (a main, outer query and an inner query).

(b) The information in the inner subquery is referenced by the outer, main query such that the inner
query may be thought of as being executed repeatedly. This point will be clarifi ed by several
examples.

In this chapter, we will study correlated subqueries. We will discuss existence queries (WHERE EXISTS)
and correlation as well as NOT EXISTS. We will also take a look at SQL’s universal and existential qualifi ers.
Before discussing correlated subqueries in detail, let’s make sure we understand what a non-correlated
subquery is.

9.1 Non-Correlated Subqueries
A non-correlated subquery is a subquery independent of the outer query. The subquery could be executed
on its own. The following is an example of a non-correlated query:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.grade = ‘A’);

Begin Note
 The part of the query in parentheses is a subquery (also referred to as a nested query or embedded query).
The subquery is an independent entity -- it would work by itself if run as a stand-alone query.
End Note

We have seen in earlier chapters that Oracle may rearrange queries to gain effi ciency. Rearrangement
aside, the subquery:

(SELECT gr.student_number
FROM Grade_report gr
WHERE gr.grade = ‘A’);

can be thought of as being evaluated fi rst, creating the set of student numbers who have A’s. The subquery
result set is then used to determine which rows in the main query will be SELECTed.

174

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

This query:

SELECT s.sname	 -- outer
FROM Student s	 -- outer
WHERE s.stno IN	 -- outer
	 (SELECT gr.student_number 	 -- inner
	 FROM Grade_report gr 	 -- inner
	 WHERE gr.grade = ‘A’)	 -- inner
;

generates:

SNAME

Lineas
Mary
Brenda
Richard
Lujack
Donald
Lynette
Susan
Holly
Sadie
Jessica
Steve
Cedric
Jerry

14 rows selected.

9.2  Correlated Subqueries
In the beginning of the chapter, we stated that correlated subqueries are subqueries in which there is a sub-
query (an outer query and an inner subquery), and the information in the subquery is referenced by the
outer query.

Correlated queries present a different execution scenario to the database manipulation language (DML)
from ordinary, non-correlated subqueries. The correlated sub-query cannot stand alone as it depends on
the outer query; completing the subquery prior to execution of the outer query is not an option. The effi-
ciency of the correlated subquery varies; it may be worthwhile to test the efficiency of correlated queries
versus joins or sets in production databases.

Begin Note
�One situation in which you cannot avoid correlation is the “for all” query, which we will discuss later in
this chapter.
End Note

175

A Practical Guide to Using SQL in Oracle

The following is an example of a correlated query:

SELECT	 s.sname
FROM	 Student s
WHERE	 s.stno IN
(SELECT	 gr.student_number
 FROM	 Grade_report gr
 WHERE	 gr.student_number = s.stno /*s.stno references outer query */
 AND	 gr.grade = ‘B’);

This produces the following output:

SNAME

Lineas
Mary
Zelda
Ken
Mario
Brenda
Kelly
Lujack
Reva
Harley
Chris
Lynette
Hillary
Phoebe
Holly
Sadie
Jessica
Steve
Cedric
George
Cramer
Fraiser
Francis
Smithly
Sebastian
Lindsay
Stephanie

27 rows selected.

Here, the inner query references the outer one -- observe the use of s.stno in the WHERE clause of the
inner query. Rather than thinking of this query as creating a set of student numbers with B’s, each row from
the outer query is SELECTed individually and tested against all rows of the inner query one at a time until
it is determined whether a given student number is in the inner set and whether that student earned a B.

This execution scenario is like a nested DO loop in a programming language, where the first row from
the Student table is SELECTed. Then each outher row is individually selected and tested against rows from
the Grade_report table. Then the second row from the Student table is SELECTed. Then, each outer row
is tested against rows from the Grade_report table. The following is the DO loop in pseudo-code:

LOOP1: For each row in Student s DO

176

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

 LOOP2: For each row in Grade_report gr DO
 IF (gr.student_number = s.stno) then
 IF (gr.grade = ‘B’) THEN TRUE
 END LOOP2;
 If TRUE, then Student row is SELECTed
END LOOP1;

This particular query could have been done without correlation in a manner similar to our first example
in this chapter; however, it demonstrates the difference in query execution.

You might think correlated queries are less efficient than doing a simple, uncorrelated subquery
because the uncorrelated subquery is done once and the correlated subquery is done once for each outer
row. However, the internal handling of how the query executes depends on the SQL and the optimizer for a
particular database engine. In Oracle, the database engine is designed so queries containing correlation are
actually quite efficient.

9.3  Existence Queries and Correlation
Correlated subqueries are often written so the question in the inner query is one of existence. For exam-
ple, assume we want to find the names of students who have taken a computer science (COSC) class and
have earned a grade of B in that course. This query, like most queries, can be written in several ways. For
example, we can use a non-correlated subquery as follows:

SELECT 	 s.sname
FROM	 Student s
WHERE 	 s.stno IN
 (SELECT	 gr.student_number
 FROM	 Grade_report gr, Section
 WHERE	 Section.section_id = gr.section_id /* join condition Grade_report-Section */
 AND	 Section.course_num LIKE ‘COSC____’
 AND	 gr.grade = ‘B’);

This query would produce the following output:

SNAME

Holly
Lynette
Stephanie
Lindsay
Fraiser
Hillary
George
Lineas
Lujack
Cramer
Chris
Brenda
Mary
Francis
Phoebe
Reva
Harley

17 rows selected.

177

A Practical Guide to Using SQL in Oracle

Since this query is non-correlated, we can think of it as first forming the set of student numbers of
students who have earned B’s in COSC courses -- the inner query result set. In the inner query, we must have
both the Grade_report and the Section tables because the course numbers are in the Section table and
the grades are in the Grade_report table. Once we form this set of student numbers (once we complete the
inner query), the outer query looks through the Student table and SELECTs only those students who are
in the inner query result set.

Begin Note
�This query could also be done by creating a double-nested subquery containing two INs, or it could be
written using a three-table join.
End Note

Had we chosen to write the query with an unnecessary correlation, it might look like this:

SELECT	 s.sname
FROM	 Student s
WHERE	 s.stno IN
 (SELECT	 gr.student_number
 FROM	 Grade_report gr, Section
 WHERE	 Section.section_id = gr.section_id /* join condition Grade_report-Section */
 AND	 Section.course_num LIKE ‘COSC____’		 /*correlation */
 AND	 gr.student_number = s.stno
 AND	 gr.grade = ‘B’);

The final result of this query would be the same as the previous one. In this case, using the Student
table in the subquery is unnecessary. Next, we will look at situations in which correlation is necessary, and,
in particular, introduce a new predicate -- EXISTS.

9.3.1  EXISTS
As noted earlier, there will be situations in which the correlation of a subquery is necessary. Another way to
write the correlated query is with the EXISTS predicate, which looks like this:

SELECT	 s.sname
FROM	 Student s
WHERE EXISTS
 (SELECT	 1
 FROM	 Grade_report gr, Section
 WHERE	 Section.section_id = gr.section_id /* join condition Grade_report-Section */
 AND	 Section.course_num like ‘COSC____’
 AND	 gr.student_number = s.stno 	 /* correlation */
 AND	 gr.grade = ‘B’);

This correlated query produces the same output (17 rows) as both of the previous queries. Let us dissect
this version.

The EXISTS predicate says, “Choose the row from the Student table in the outer query if the subquery
is TRUE” -- if a row in the subquery exists and satisfies the condition in the subquery WHERE clause. Since
no actual result set for the inner query is formed, “SELECT 1” is used as a “dummy” result set to indicate the
subquery is TRUE (1 is returned) or FALSE (no rows are returned). In the non-correlated case, we tied the
student number in the Student table to the inner query by the IN predicate as follows:

SELECT	 s.stno
FROM	 Student s
WHERE	 s.stno IN
 (SELECT “student number”...)

178

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

When using the EXISTS predicate, we use the Student table in the subquery (i.e., it’s correlated).
Hence, we are seeking only to find whether the subquery WHERE clause can be satisfied.

What is the “SELECT 1” doing in the subquery? Using the EXISTS predicate, the subquery does not form
a result set per se, but rather returns TRUE or FALSE. SELECT * in the subquery may be used; however,
from an “internal” standpoint, SELECT * causes the SQL engine to check the Data Dictionary unnecessar-
ily. Because the actual result of the inner query is only TRUE or FALSE, it is suggested that SELECT ‘X’ (or
SELECT 1) ... instead of SELECT * be used so a constant is SELECTed instead of some “sensible” entry. The
SELECT ‘X’… or (SELECT 1...) is simply more efficient.

The EXISTS predicate forces us to correlate the query. To illustrate where correlation is usually neces-
sary with EXISTS, consider the following query:

SELECT	 s.sname	 /* exists-uncorrelated */
FROM	 Student s
WHERE EXISTS
	 (SELECT	 ‘X’
	 FROM	 Grade_report gr, Section t
	 WHERE 	 t.section_id = gr.section_id	 /* join Grade_report-Section */
	 AND	 t.course_num like ‘COSC____’
	 AND	 gr.grade = ‘B’);

This produces the following output:

SNAME

Lineas
Mary
Brenda
Richard
Kelly
.
.
.
Romona
Ken
Smith
Jake

48 rows selected.

This query uses EXISTS, but has no correlation. This syntax infers that for each student row, we test
the joined the Grade_report and Section tables to see whether there is a course number like COSC and a
grade of B (which, of course, there is). We unnecessarily ask the subquery question over and over again. The
result from this latter, uncorrelated EXISTS query is the same as:

SELECT	 s.sname
FROM	 Student s;

The point is the correlation is necessary when we use EXISTS.

Consider another example in which a correlation could be used. Suppose we want to find the names of
all students who have three or more B’s. A first pass at a query might be something like this:

SELECT	 s.sname
FROM	 Student s WHERE “something” IN
 (SELECT	 “something”
 FROM	 Grade_report
 WHERE	 “count of grade = ‘B’” > 2);

179

A Practical Guide to Using SQL in Oracle

This query can be done with a HAVING clause as we saw previously, but we want to show how to do this
in yet another way. Suppose we arrange the subquery to use the student number from the Student table as
a filter and count in the subquery only when a row in the Grade_report table correlates to that particular
student. The query looks like this:

SELECT 	 s.sname
FROM	 Student s
WHERE 2 < (SELECT COUNT(*) -- EXISTS implied
	 FROM	 Grade_report gr
	 WHERE	 gr.student_number = s.stno
	 AND	 gr.grade = ‘B’);

This results in the following output:

SNAME

Lineas
Mary
Lujack
Reva
Chris
Hillary
Phoebe
Holly

8 rows selected.

Although there is no EXISTS in the query, it is implied. The syntax of the query does not allow an EXISTS,
but the sense of the query is “WHERE EXISTS a COUNT OF 2 WHICH IS LESS THAN…” In this correlated
query, we must examine the Grade_report table for each member of the Student table to see whether the
student has two B’s (correlation). We test the entire Grade_report table for each student row in the outer query.

If it were possible, a subquery without the correlation would be more desirable. The overall query might
start out like this:

SELECT	 s.sname
FROM	 Student s
WHERE	 s.stno in ...

We might attempt to write the following subquery:

SELECT	 s.sname
FROM	 Student s
WHERE	 s.stno IN
 (SELECT	 gr.student_number
 FROM	 Grade_report gr
 WHERE	 gr.grade = ‘B’);

180

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

However, this would give us only students who had made at least one B, as seen in the following output:

SNAME

Lineas
Mary
Zelda
Ken
Mario
Brenda
Kelly
Lujack
Reva
Harley
Chris
Lynette
Hillary
Phoebe
Holly
Sadie
Jessica
Steve
Cedric
George
Cramer
Fraiser
Francis
Smithly
Sebastian
Lindsay
Stephanie

27 rows selected.

To get students who have earned three B’s, we could try the following query:

SELECT	 s.sname
FROM	 Student s
WHERE	 s.stno IN -- this query will not work!
 (SELECT	 gr.student_number, COUNT(*)
 FROM	 Grade_report gr
 WHERE	 gr.grade = ‘B’
 GROUP BY	 gr.student_number
 HAVING	 COUNT(*) > 2);

However, this will not work because the subquery cannot have two attributes in its result set unless the
main query has two attributes in the WHERE .. IN. Here, the subquery must have only gr.student_number
to match s.stno. We might then construct an inline view as with the following query:

SELECT	 s.sname
FROM	 Student s
WHERE	 s.stno IN
 (SELECT	 student_number
 FROM	 (SELECT student_number, COUNT(*)
 FROM	 Grade_report gr
 WHERE	 gr.grade = ‘B’
 GROUP BY	 student_number having COUNT(*) > 2));

181

A Practical Guide to Using SQL in Oracle

This succeeds in Oracle but may fail in other versions of SQL. The output of this query would be:

SNAME

Holly
Hillary
Lineas
Lujack
Chris
Mary
Reva
Phoebe

8 rows selected.

As you can see, we can query the database using various methods with SQL. In this case, the correlated
query may be the easiest to see and perhaps the most efficient.

9.3.2  From IN to EXISTS
A simple example of converting from IN to EXISTS or from uncorrelated to correlated queries (or vice versa),
would be to move the set-test in the WHERE .. IN of the uncorrelated query to the WHERE of the EXISTS
in the correlated query. For example, note the placement of the set-test in the following uncorrelated query:

SELECT	 *
FROM	 Student s
WHERE	 s.stno IN -- link s.stno to the subquery
 (SELECT	 g.student_number
 FROM	 Grade_report g
 WHERE	 grade = ‘B’);

Now, note the placement of the set test in the following correlated query:

SELECT	 *
FROM	 Student s
WHERE EXISTS -- replace IN with EXISTS
 (SELECT	 1 -- change the result set to 1
 FROM	 Grade_report g
 WHERE	 grade = ‘B’
 AND	 s.stno = g.student_number) -- move link here to correlate the subquery
;

182

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

These two queries produce the following output:

	 STNO	 SNAME 	 MAJOR	 CLASS	 BDATE
-------------- 	 ------------- 	 ------------ 	 ----------- 	 ---------------
	 2	 Lineas	 ENGL	 1	 15-APR-01
	 3	 Mary	 COSC	 4	 16-JUL-98
	 5	 Zelda	 COSC		 12-FEB-98
	 6	 Ken	 POLY		 15-JUL-01
	 7	 Mario	 MATH		 12-AUG-01
	 8	 Brenda	 COSC	 2	 13-AUG-97
	 3	 Kelly	 MATH	 4	 12-AUG-01
	 14	 Lujack	 COSC	 1	 12-FEB-97
	 15	 Reva	 MATH	 2	 10-JUN-01
	 19	 Harley	 POLY	 2	 16-APR-02
	 24	 Chris	 ACCT	 4	 12-FEB-98
	 .
	 .
	 .

	 148	 Sebastian	 ACCT	 2	 14-OCT-96
	 155	 Lindsay	 UNKN	 1	 15-OCT-98
	 157	 Stephanie	 MATH		 16-APR-02

27 rows selected.

This example gives us a pattern to move from one kind of query to the other and test the efficiency of
both kinds of queries. In the EXISTS version, we changed the result set for the subquery to 1 by removing
the original result set of g_student_numbers.

9.3.3  NOT EXISTS
There are some situations in which the EXISTS and NOT EXISTS predicates are necessary. For example, if
we ask a “for all” question, it must be answered by “existence” (actually, the lack thereof [that is, “not exis-
tence”]). In logic, the statement “find x for all y” is logically equivalent to “do not find x where there does
not exist a y.” In SQL, there is no “for all” predicate. Instead, SQL uses the idea of “for all” logic with NOT
EXISTS. (A word of caution -- SQL is not simply a logic exercise, as we will see.) We will first see how EXISTS
and NOT EXISTS work in SQL, and then tackle the “for all” problem. Consider the following correlated, exis-
tence query to find students who have made a C in some course:

SELECT	 s.sname, s.stno, s.major
FROM	 Student s
WHERE EXISTS
 (SELECT	 	 ‘X’
 FROM	 	 Grade_report gr
 WHERE		 s.stno = gr.student_number
 /* return TRUE if a student has made a C */
 AND		 gr.grade = ‘C’)
ORDER BY		 s.sname;

183

A Practical Guide to Using SQL in Oracle

This produces the following output:

SNAME	 STNO	 MAJO
-------------------- 	 ------------	 ----------
Alan	 130	 COSC
Benny	 161	 CHEM
Bill	 70	 POLY
Brenda	 8	 COSC
Donald	 20	 ACCT
Genevieve	 153	 UNKN
Gus	 160	 ART
Jake	 31	 COSC
Jessica	 126	 POLY
Ken	 6	 POLY
Lionel	 163	
Losmith	 151	 CHEM
Mario	 7	 MATH
Monica	 62	 MATH
Rachel	 131	 ENGL
Reva	 15	 MATH
Richard	 10	 ENGL
Sadie	 125 	 MATH
Sebastian	 148	 ACCT
Smithly	 147	 ENGL
Steve 	 127	 ENGL
Susan	 49	 ENGL
Thornton	 158	
Zelda	 5	 COSC

24 rows selected.

The ORDER BY was added for comparison purposes. For this correlated query, “student names” are
SELECTed when:

(a)	 The student is enrolled in a section (WHERE s.stno = gr.student_number), and

(b)	 The same student has a grade of C.

In the EXISTS version of this query, both (a) and (b) must be TRUE for the student row to be SELECTed.
We use SELECT 1 or SELECT ‘X’ in our inner query because we want the subquery to return something if
the subquery is TRUE. Therefore, SELECT .. EXISTS “says” SELECT .. WHERE TRUE, and the inner query
is TRUE if any row is SELECTed in the inner query.

Here is the join version for comparison:

SELECT	 DISTINCT s.sname, s.stno, s.major, g.grade
FROM	 student s, grade_report g
WHERE	 s.stno = g.student_number
  AND	 g.grade = ‘C’
  ORDER BY	 s.sname;

184

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

Which gives:

SNAME	 STNO	 MAJOR 	 GRA
--------------------	 ---------- 	 ------------	 --------
Alan	 130 	 COSC 	 C
Benny	 161 	 CHEM 	 C
Bill	 70 	 POLY 	 C
Brenda	 8 	 COSC 	 C
Donald	 20	 ACCT 	 C
Genevieve	 153	 UNKN 	 C
Gus		 160	 ART	 C
Jake	 31	 COSC 	 C
Jessica	 126	 POLY	 C
Ken		 6	 POLY 	 C
Lionel	 163		 C
Losmith	 151	 CHEM 	 C
Mario	 7	 MATH	 C
Monica	 62	 MATH	 C
Rachel	 131	 ENGL	 C
Reva	 15 	 MATH	 C
Richard	 10	 ENGL	 C
Sadie	 125	 MATH	 C
Sebastian	 148	 ACCT	 C
Smithly	 147	 ENGL	 C
Steve	 127	 ENGL	 C
Susan	 49	 ENGL	 C
Thornton	 158		 C
Zelda	 5	 COSC	 C

24 rows selected.

Now consider the following query, where we change EXISTS to NOT EXISTS:

SELECT	 s.sname
FROM	 Student s
WHERE NOT EXISTS
 (SELECT	 ‘X’
 FROM	 Grade_report gr
 WHERE	 s.stno = gr.student_number
 AND	 gr.grade = ‘C’)
ORDER BY	 s.sname;

185

A Practical Guide to Using SQL in Oracle

This produces the following output:

SNAME

Brad
Cedric
Chris
Cramer
Elainie
Fraiser
Francis
George
Harley
Harrison
Hillary
Holly
Jake
Jerry
Kelly
Lindsay
Lineas
Lujack
Lynette
Mary
Phoebe
Romona
Smith
Stephanie

24 rows selected.

In this query, we are still SELECTing with the pattern SELECT .. WHERE TRUE because all SELECTs
with EXISTS work that way. However, the twist is the subquery must be FALSE to be SELECTed with NOT
EXISTS. If the subquery is FALSE, then NOT EXISTS is TRUE and the outer row is SELECTed.

Now, logic implies if either (a) s.stno <> gr.student_number or (b) gr.grade <> ‘C’, then the subquery
“fails” -- it is FALSE for that student row. Because the subquery is FALSE, the NOT EXISTS would return a
TRUE for that row. Unfortunately, this logic is not quite what happens. Recall, we characterized the corre-
lated query as follows:

LOOP1: For each row in Student s DO
	 LOOP2: For each row in Grade_report DO
	 IF (gr.student_number = s.stno) THEN
 	 IF (gr.grade = ‘C’) THEN TRUE
	 END LOOP2;
	 if TRUE, then student row is SELECTed
END LOOP1;

LOOP2 is completed before the next student is tested. In other words, just because there is a student
number inequality, this will not cause the subquery to be FALSE. Rather, the entire subquery table is parsed,
and the logic is more like this:

186

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

For the case “EXISTS WHERE s.stno = gr.student_number…,” is there a gr.grade = ‘C’? If, when the
student numbers are equal, no C can be found; then the subquery fails and is FALSE for that outer student
row. So with NOT EXISTS we will SELECT students with student numbers equal in the Grade_report and
Student tables, but who have no ‘C’ in the Grade_report table. The point about “no C in the Grade_report
table” can only be answered TRUE by looking at all the rows in the inner query.

Consider this join version:

SELECT DISTINCT s.sname, g.grade
FROM Student s, Grade_report g
WHERE s.stno = g.student_number
 AND g.grade <> ‘C’;

This gives:

SNAME	 GRA
----------------------------- 	 -------
Lineas		 D
Lujack		 B
Reva		 F
Lynette	 A
Brad		 F
George		 B
Lineas		 A
Mary		 B
Lynette	 B
Harrison	 F
Lindsay	 B
.
.
.
Reva		 B
Susan		 A
Fraiser	 B

47 rows selected.

This join returns 47 rows because it is telling us all the Student-Grade_report combinations where
there is no C. Remember, a join is a Cartesian product restricted by s.stno = g.grade_report. So a student
could have a C and also have some other grade. The query would return that student and the non-C grade.
The NOT EXISTS only returns students with no C at all.

There is one other point to be made here. The two results from above (EXISTS vs. NOT EXISTS) have
the same number of rows, but this is just a coincidence. If the two result sets are examined, you will notice
the people in the two sets are all different. Two people in the second result set show up because they took
no courses and hence had no rows in the inner query of the NOT EXISTS (<Smith,88..> and <Jake,191 ..>).
One has to be careful to account for nulls situations.

An extra query to check for this situation could be:

SELECT	 s.sname, s.stno, s.major
FROM	 Student s
WHERE	 s.stno NOT IN -- students who have taken no courses
(SELECT	 g.student_number
FROM	 Grade_report g);

187

A Practical Guide to Using SQL in Oracle

Giving:

SNAME	 STNO 	 MAJOR
-------------------- 	 ---------- 	 -----------
Smith	 88
Jake	 191 	 MATH

9.4 � SQL Universal and Existential Qualifiers --
the “for all” Query

The terms “for all,” “for each,” and “by all” are called “universal qualifiers,” and “there exists” is the “exis-
tential qualifier.” SQL has an existential predicate with the EXISTS predicate. As we mentioned above, SQL
does not have a “for all” predicate; however, logically, the following relationship exists:

	 For all x, WHERE P(x) is true

is logically the same as:

	 There does not exist an x, WHERE P(x) is not true.

A “for all” type SQL query is less straightforward than the other queries we have studied and used. The
“for all” type SQL query involves a double-nested, correlated query using the NOT EXISTS predicate. The
next section shows an example.

Example 1

To show a “for all” type SQL query, we will use tables other than our student records. We have created a
table called Languages. This table has names of students who have multiple foreign-language capabilities.
We begin by looking at the table by typing the following query:

SELECT	 *
FROM	 Languages
ORDER BY	 name;

This produces the following output:

NAME	 LANGU
-------------------	 --------------
BRENDA	 FRENCH
BRENDA 	 CHINESE
BRENDA	 SPANISH
JOE	 CHINESE
KENT	 CHINESE
LUJACK	 SPANISH
LUJACK	 FRENCH
LUJACK	 CHINESE
LUJACK	 GERMAN
MARY JO	 CHINESE
MARY JO	 FRENCH
MARY JO	 GERMAN
MELANIE	 CHINESE
MELANIE	 FRENCH
RICHARD 	 FRENCH
RICHARD	 SPANISH
RICHARD	 GERMAN
RICHARD	 CHINESE

18 rows selected.

188

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

Notice, for all languages in this table, RICHARD and LUJACK speak all four.

Another view of this table ordered by language is:

NAME	 LANGU
---------------------	 ---------------------
JOE	 CHINESE
MARY JO 	 CHINESE
KENT 	 CHINESE
LUJACK 	 CHINESE
MELANIE 	 CHINESE
RICHARD 	 CHINESE
BRENDA 	 CHINESE
MELANIE 	 FRENCH
LUJACK 	 FRENCH
MARY JO 	 FRENCH
BRENDA 	 FRENCH
RICHARD 	 FRENCH
LUJACK 	 GERMAN
RICHARD 	 GERMAN
MARY JO 	 GERMAN
BRENDA 	 SPANISH
LUJACK 	 SPANISH
RICHARD 	 SPANISH

18 rows selected.

In this sort order, notice CHINESE occurs for all names.

Suppose we want to find out which languages are spoken by all students using SQL. This is a universal
qualifier question. Although this manual exercise would be very difficult for a large table, for our practice
table, we can answer the question by looking at the table sorted two ways as above.

To see how to answer a question of this type for a much larger table where sorting and examining the
result would be tedious, we will construct a query. We will show the query and then dissect the result. The
query to answer our question, “Which language(s) are spoken by all students?,” looks like this:

SELECT name, langu
FROM Languages x
WHERE NOT EXISTS
	 (SELECT ‘X’
	 FROM Languages y
	 WHERE NOT EXISTS
	 (SELECT ‘X’
	 FROM Languages z
	 WHERE x.langu =z.langu
	 AND y.name=z.name));

As you will see, all of the “for all/for each/by all” questions follow this double-nested, correlated NOT
EXISTS pattern. It is convenient to use the table aliases (x, y, and z) here for the three instances of the table,
Languages.

189

A Practical Guide to Using SQL in Oracle

The result set for this query will be:

NAME 	 LANGU
--------- 	 ------------
BRENDA	 CHINESE
RICHARD	 CHINESE
LUJACK	 CHINESE
MARY JO	 CHINESE
MELANIE	 CHINESE
JOE	 CHINESE
KENT	 CHINESE

7 rows selected.

The Way the Query Works

To SELECT a language spoken by all students, the query proceeds as follows:

a.	 SELECT a row in Languages(x) (outer query).

b.	 For that row, begin SELECTing each row again in Languages(y) (middle query).

c.	 For each of the middle query rows, we want the inner query (Languages(z)) to be TRUE for all
cases of the middle query (TRUE is translated to FALSE by the NOT EXISTS). As each inner
query is satisfied (it is TRUE), it forces the middle query to continue looking for a match -- to look
at all cases and eventually conclude FALSE (evaluate to FALSE overall). If the middle query is
FALSE, the outer query sees TRUE because of its NOT EXISTS.

To make the middle query (y) find FALSE, all of the inner query (z) occurrences must be TRUE (i.e., the
languages from the outer query have to exist with all names from the middle one (y) in the inner one (z)).
For an eventual match, every row in the middle query for an outer query row must be FALSE (i.e., every row
in the inner query is TRUE).

These steps are explained in further detail in the next example where we used a smaller table,
Languages1 (so it will be easier to understand the explanation).

Example 2

Suppose we had this simpler table, Languages1, as shown below:

NAME	 LANGU
Joe	 Spanish
Mary	 Spanish
Mary	 French

Begin Note
�Note, this table, Languages1, does not exist. You will have to create it. The attribute names and types
are the same as the Languages table.
End Note

Using this smaller table, Languages1, let’s now look at how we can answer the same question, “Which
language(s) are spoken by all students?.” We can see the answer is Spanish.

190

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

The query will be similar to the one used in Example 1:

SELECT	 name, langu
FROM	 Languages1 x
WHERE NOT EXISTS
	 (SELECT	 ‘X’
	 FROM	 Languages1 y
	 WHERE NOT EXISTS
	 (SELECT	 ‘X’
	 FROM	 Languages1 z
	 WHERE	 x.langu = z.langu -- x and z .. so what languages occurs
	 AND	 y.name = z.name)) -- for all names
ORDER BY langu;

The output for this query will be:

NAME	 LANGU
-------------------	 -----------
Mary	 Spanish
Joe	 Spanish

The result set tells us Spanish is spoken by all students in the Language1 table.

How this query works:

Here is the Languages1 table again:

NAME	 LANGU
Joe	 Spanish
Mary	 Spanish
Mary	 French

1.	 The row <Joe, Spanish> is SELECTed by the outer query (x).

2.	 The row <Joe, Spanish> is SELECTed by the middle query (y).

3.	 The row <Joe, Spanish> is SELECTed by the inner query (z).

4.	 The inner query is TRUE:

	 X.LANGU = Spanish
 	 Z.LANGU = Spanish
	 Y.NAME = Joe
	 Z.NAME = Joe

5.	 Because the inner query is TRUE, the NOT EXISTS of the middle query translates this to FALSE
and continues with the next row in the middle query. The middle query SELECTs <Mary, Spanish>
and the inner query begins again with <Joe, Spanish> seeing:

	 X.LANGU = Spanish
	 Z.LANGU = Spanish
	 Y.NAME = Mary
	 Z.NAME = Joe

	 This is FALSE, so the inner query SELECTs a second row <Mary, Spanish>:

	 X.LANGU = Spanish
	 Z.LANGU = Spanish
	 Y.NAME = Mary
	 Z.NAME = Mary

191

A Practical Guide to Using SQL in Oracle

	 This is TRUE, so the inner query is TRUE. (Notice, the X.LANGU has not changed, yet the outer
query (X) is still on the first row.)

6.	 Because the inner query is TRUE, the “NOT EXISTS” of the middle query translates this to FALSE
and continues with the next row in the middle query. The middle query now SELECTs <Mary,
French> and the inner query begins again with <Joe, Spanish> seeing:

	 X.LANGU = Spanish
	 Y.NAME = Mary
	 Z.NAME = Joe

	 This is FALSE, so the inner query SELECTs a second row <Mary, Spanish>:

	 X.LANGU = Spanish
	 Z.LANGU = Spanish
	 Y.NAME = Mary
	 Z.NAME = Mary

	 This is TRUE, so the inner query is TRUE.

7.	 Because the inner query is TRUE, the NOT EXISTS of the middle query again converts this TRUE
to FALSE and wants to continue, but the middle query is out of rows. This means the middle query
is FALSE.

8.	 Because the middle query is FALSE, and because we are testing this query:

	 “SELECT distinct name, language
	 FROM Languages1 x
	 WHERE NOT EXISTS
	 (SELECT ‘X’ FROM Languages1 y ...),”

	 the FALSE from the middle query is translated to TRUE for the outer query and the row
<Joe,Spanish> is SELECTed for the final result set. Note, “Spanish” occurs with both “Joe”
and “Mary.”

9. 	 The second row in the outer query will repeat the steps from above for <Mary, Spanish>. The value
“Spanish” will be seen to occur with both “Joe” and “Mary” as <Mary, Spanish> is added to the
result set.

10. 	 The third row in the outer query begins with <Mary, French>. The middle query SELECTs <Joe,
Spanish> and the inner query SELECTs <Joe, Spanish>. The inner query sees:

	 X.LANGU = French
	 Z.LANGU = Spanish
	 Y.NAME = Joe
	 Z.NAME = Mary

	 This is FALSE, so the inner query SELECTs a second row, <Mary, Spanish>:

	 X.LANGU = French
	 Z.LANGU = Spanish
	 Y.NAME = Joe
	 Z.NAME = Mary

	 This is FALSE, so the inner query SELECTs a third row, <Mary, French>:

	 X.LANGU = French
	 Z.LANGU = French
	 Y.NAME = Joe
	 Z.NAME = Mary

192

 
Co

rre
la

te
d

Su
bq

ue
rie

s  

Ch
ap

te
r 9

This is also FALSE. The inner query fails. The inner query evaluates to FALSE, which causes the middle
query to see TRUE because of the NOT EXISTS. Because the middle query sees TRUE, it is finished and
evaluated to TRUE. Because the middle query evaluates to TRUE, the NOT EXISTS in the outer query
changes this to FALSE, and “X.LANGU = French” fails. It failed because X.LANGU = French did not occur
with all values of the attribute, name.

Consider again the “for all” query we have presented:

SELECT	 name, langu
FROM	 Languages1 x
WHERE NOT EXISTS
	 (SELECT	 ‘X’
	 FROM	 Languages1 y
	 WHERE NOT EXISTS
	 (SELECT	 ‘X’
	 FROM	 Languages1 z
	 WHERE	 x.langu = z.langu -- x and z .. what language occurs
	 AND	 y.name = z.name)) -- for all names
ORDER BY langu;

The tip-off of what a query of this kind means can be found in the inner-most query. You will find a phrase
that says, “WHERE x.langu = z.langu…” The x.langu is where the query is testing which language
occurs for all names. Using our x, y, z notation, the inner query tests x and z.

This query is a SQL realization of a relational division exercise. Relational division is a “for all” operation
just like that which we have illustrated above. In relational algebra, the query must be set up into a divisor,
dividend, and quotient in this pattern:

Quotient (B) Dividend(A, B) divided by Divisor (A).

If the question is “What language for all names,” then the Divisor, A, is names, and the quotient, B, is
language. It is most prudent to set up SQL like relational algebra with a two column table (like Languages
or Languages1) for the Dividend and then treat the Divisor and the Quotient appropriately. Our query will
have the attribute for language, x.langu, in the inner query; langu will be the quotient. We have chosen to
also report the name attribute in the result set.

Example 3

Note, the preceding query is completely different from the following one which asks, “Which students
speak all languages?”:

SELECT	 DISTINCT name, langu
FROM 	 Languages1 x
WHERE NOT EXISTS
	 (SELECT ‘X’
	 FROM	 Languages1 y
	 WHERE NOT EXISTS
	 (SELECT	 ‘X’
	 FROM 	 Languages1 z
	 WHERE	 x.name = z.name -- x and z: What names occur for all languages?
	 AND	 y.langu = z.langu)) -- for all languages
ORDER BY langu;

This would produce the following output:

NAME	 LANGU
----------	 ------------
Mary	 French
Mary	 Spanish

193

A Practical Guide to Using SQL in Oracle

Note the phraseology, “find the name for all languages,” which infers x.name will occur in the WHERE of
the inner query. If you look back at the previous example, “find languages for all names” means x.langu is in
the inner query.

Using the table Languages, the following query:

SELECT	 DISTINCT name, langu
FROM 	 Languages x
WHERE NOT EXISTS
	 (SELECT	‘X’
	 FROM	 Languages y
	 WHERE NOT EXISTS
	 (SELECT	 ‘X’
	 FROM	 Languages z
	 WHERE	 x.name = z.name -- x and z .. what names occur
	 AND	 y.langu = z.langu)) -- for all languages?
ORDER BY langu;

Would give:

NAME	 LANGU
-----------	 -----------
LUJACK	 CHINESE
RICHARD	 CHINESE
LUJACK	 FRENCH
RICHARD	 FRENCH
LUJACK	 GERMAN
RICHARD	 GERMAN
LUJACK	 SPANISH
RICHARD	 SPANISH

8 rows selected.

The inner query contains x.name, which means the question was “Which names occur for all
languages?” or, put another way, “Which students speak all languages?” The “all” goes with languages
for x.name.

194 Exercises for Chapter 9
As you do the exercises, unless it is stated otherwise, you will be using the tables from our standard Student-
Course database. Also, as you do the exercises, it will be a good idea to copy/paste your query as well as
your query result into a word processor.

9-1. List the names of students who have received C’s. Do this in three ways: (a) as a join, (b) as an
uncorrelated subquery, and (c) as a correlated subquery. Show all the results and account for any
differences.

9-2. In the section, “Existence Queries and Correlation,” we were asked to fi nd the names of students
who have taken a computer science class and earned a grade of B. We noted this could be done in
several ways. One query could look like the following:

 SELECT s.sname
 FROM Student s
 WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr, Section
 WHERE Section.section_id = gr.section_id /* join condition Grade_report-Section */
 AND Section.course_num LIKE ‘COSC____’
 AND gr.grade = ‘B’);

 Re-do this query putting the fi nding of the COSC course in a correlated subquery. The query should
be: The Student table uncorrelated subquery to the Grade_report table correlated EXISTS to
the Section table.

9-3. In the section “SQL Universal and Existential Qualifi ers,” we illustrated an existence query:

 SELECT s.sname
 FROM Student s
 WHERE EXISTS
 (SELECT ‘X’
 FROM Grade_report gr
 WHERE s.stno = gr.student_number
 AND gr.grade = ‘C’);

 and a NOT EXISTS version:

 SELECT s.sname
 FROM Student s
 WHERE NOT EXISTS
 (SELECT ‘X’
 FROM Grade_report gr
 WHERE s.stno = gr.student_number
 AND gr.grade = ‘C’);

 Show that the EXISTS version is the opposite of the NOT EXISTS version -- count the rows in the
EXISTS result, the rows in the NOT EXISTS result, and the rows in the Student table. Also, devise
a query to test the opposite with IN and NOT..IN.

9-4. a. Discover whether all students take courses by counting the students, then count those students
whose student numbers are in the Grade_report table and those who are not. Use IN and
then NOT..IN, and then use EXISTS and NOT EXISTS. How many students take courses and
how many students do not?

195 b. Find out which students have taken courses but have not taken COSC courses. Create a set of
student names and courses from the Student, Grade_report, and Section tables (use the
prefi x COSC to indicate COSC courses). Then use NOT..IN to subtract from that set another
set of student names where students (who take courses) have taken COSC courses. For this set
difference, use NOT..IN.

 c. Change NOT..IN to NOT EXISTS (with other appropriate changes) and explain the result.
The “other appropriate changes” include adding the correlation and the change of the result
attribute in the subquery set.

9-5. There is a table called Plants in our Student-Course database. Display the table contents and
determine which company or companies have plants in all cities. Verify your result manually. Note:
If you are having trouble fi nding Plants, ask yourself who owns the table Plants?

9-6. a. Run the following query and print the result:

 SELECT distinct name, langu
 FROM Languages x
 WHERE NOT EXISTS
 (SELECT ‘X’
 FROM Languages y
 WHERE NOT EXISTS
 (SELECT ‘X’
 FROM Languages z
 WHERE x.langu =z.langu
 AND y.name=z.name));

 Save the query (e.g., save forall) and hand in the result.

 b. Re-create the Languages table under your account number (call it some other name such
as LANG1). To do this, fi rst create the table and then use the INSERT statement with the
subselect option (INSERT INTO LANG1 AS SELECT * FROM Languages;).

 c. Add a new person to your table who speaks only BENGALI.

 d. Recall your stored SELECT from above (get forall).

 e. CHANGE the table from LANGUAGES to LANG1 (for all occurrences use CHANGE/
Languages/lang1/ repeatedly, assuming you called your table LANG1).

 f. Start the new query (the one you just created with LANG1 in it).

 g. How is this result different from the situation when “Newperson” was not in LANG1? Provide
an explanation of why the query did what it did.

9-7. (Refer to Exercise 7-7 in Chapter 7) The D2M table is a list of four-letter department codes with
the department names. In Exercise 7-7, we created a table called Secretary, which should now
have data like this:

 Secretary
 dCode Name
 ACCT Sally
 COSC Chris
 ENGL Maria

	 In Exercise 7-7, we did the following:

	 a.	� Create a query to list the names of departments that have secretaries (use IN and the Secretary
table in a subquery with the Department_to_major table in the outer query). Save this query
as q77a.

	 b.	� Create a query to list the names of departments without secretaries (use NOT..IN). Save this
query as q77b.

	 c.	� Add one more row to the Secretary table containing <null, ‘Brenda’>. (This could be a
situation in which we have hired Brenda but have not yet assigned her to a department.)

	 d.	 Recall q77a and re-run it.

	 e.	 Recall q77b and re-run it.

	 We remarked in Exercise 7-7 that the NOT..IN predicate has problems with nulls. The behavior of
NOT..IN when nulls exist may surprise you. If nulls may exist in the subquery, then NOT..IN should
not be used. If you use NOT..IN in a subquery, you must ensure nulls will not occur in the subquery
or you must use some other predicate (such as NOT EXISTS). Perhaps the best solution is to avoid
NOT..IN.

	 Here, we repeat Exercise 7-7 using NOT EXISTS:

	 a.	� Re-word query q77a to use EXISTS. You will have to correlate the inner and outer queries.
Save this query as q99a.

	 b.	� Re-word query q77b to use NOT EXISTS. You will have to correlate the inner and outer queries.
Save this query as q99b. You should not have a phrase “IS NOT NULL” in your NOT EXISTS
query.

	 c.	 Re-run q99a with and without <null, Brenda>.

	 d.	 Re-run q99b with and without <null, Brenda>.

	 Note the difference in behavior versus the original question. List the names of those departments
that have/do not have secretaries. The point here is to encourage you to use NOT EXISTS in a
correlated query rather than NOT..IN.

References

�Earp, R., & Bagui, S. (2001). “An In-Depth Look at Oracle’s Correlated Subqueries,” Oracle Internals,
Vol. 3(4), 2–8.

