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8Matrices, Linear Systems,
and Determinants

8.1 Matrices and Linear Systems

8.2 Matrix Operations and Applications

8.3 Inverses of Matrices

8.4 Determinants

8.5 Properties of Determinants

8.6 Cramer’s Rule

Have you recently sent or received a picture of a friend by email or cell phone? Or perhaps

you plan on watching a DVD with friends tonight. The pictures you will see are digital

images, which are made up of pixels. For a black-and-white image, each pixel has a value

representing the gray-level intensity. If we replace each pixel in the image with its value, a

number, we get a rectangular array that looks like this:



� �
This array is called a matrix. By multiplying each entry by 3, we would

increase the contrast. Other matrix operations (Section 8.2) can be applied to

alter the image in other ways. The chapter project explores some possibilities.

Explore some mathematical topics, including this one, in the Journal of

Online Math ematics at http://www.joma.org/, which is part of the

Mathematical Association of America’s Mathematical Sciences Digital Library.

The material on matrices and determinants presented in this chapter

serves as an introduction to linear algebra, a mathematical subject that is

used in the natural sciences, business and economics, and the social sci-

ences. Since methods involving matrices may require millions of numerical

computations, computers have played an important role in expanding the

use of matrix techniques to a wide variety of practical problems.

Our study of matrices and determinants will focus on their application to

the solution of systems of linear equations. We will see that the method of

Gaussian Elimination, studied in the previous chapter, can be readily imple-

mented using matrices. We will show that matrix notation provides a conven-

ient means for writing linear systems and that the inverse of a matrix enables

us to solve such a system. Determinants will also provide us with an additional

technique, known as Cramer’s Rule, for the solution of certain linear systems.

It should be emphasized that this material is a very brief introduction to

matrices and determinants. Their properties and applications are both

extensive and important.
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Definitions

We have already studied several methods for solving a linear system, such as

2x � 3y � �7

3x � 3y �  17

This system can be displayed by a matrix, which is a rectangular array of mn real

numbers arranged in m horizontal rows and n vertical columns. The numbers are

called the entries, or elements, of the matrix and are enclosed within brackets.

Thus,

rows

h  h  hcolumns..
......

is a matrix consisting of two rows and three columns, whose entries are

obtained from the two given equations. In general, a matrix of m rows and n

columns is said to be of dimension m by n, written m × n. The matrix A is seen

to be of dimension 2 × 3. If the numbers of rows and columns of a matrix are

both equal to n, the matrix is called a square matrix of order n.

EXAMPLE 1  DIMENSION OF A MATRIX

a. A �

is a 2 × 2 matrix. Since matrix A has two rows and two columns, it is a

square matrix of order 2.

b. B �

f
fA � [23   

3
�1

   
�7
17 ]

[�1
1 

       
4

�2 ]

[ 4   �5
�2      1

3      0 ]

Chapter 8 n Matrices, Linear Systems, and Determinants 499

Calculator Alert

Many calculators have matrix capabilities. When you understand the basic con-

cepts of matrix computations and applications, you will find that this capabili-

ty is a useful tool for problem solving. Your owner’s manual has instructions

for performing matrix operations. See Example 7 in this Section.

8.1  Matrices and Linear Systems



has three rows and two columns and is a 3 × 2 matrix.

c. C � [�8  6  1]

is a 1 × 3 matrix and is called a row matrix since it has precisely one row.

d. D � 

is a 2 × 1 matrix and is called a column matrix since it has exactly one
column.

Subscript Notation

There is a convenient way of denoting a general m × n matrix, using “double sub-

scripts.”

A � � �
.

Thus, aij is the entry in the ith row and jth column of the matrix A. It is cus-

tomary to write A � [aij] to indicate that aij is the entry in row i and column j

of matrix A.

EXAMPLE 2  MATRIX DIMENSION AND ELEMENT NOTATION
Let

A � � �
Matrix A is of dimension 3 × 4. The element a12 is found in the first row and sec-

ond column and is seen to be �2. Similarly, we see that a31 � �3, a33 � �4 and

a34 � 8.

← first row
← second row

← ith row

← mth row

a1n

a2n

·
·
·

ain

·
·
·

amn

· · ·
· · ·

· · ·

· · ·

a1j

a2j

·
·
·

aij

·
·
·

amj

· · ·
· · ·

· · ·

· · ·

a12
a22

·
·
·

ai2
·
·
·

am2

a11
a21

·
·
·

ai1
·
·
·

am1

[ 2  
�4 ]

↑
nth

column

↑
jth

column

↑
second
column

↑
first

column

3 –2 4 5

9 1 2 0

–3 2 –4 8
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Coefficient and Augmented Matrices

If we begin with the system of linear equations

2x � 3y � �7

3x � 3y � 17

the matrix

��23
�

�

3
1

��
in which the first column is formed from the coefficients of x and the second

column is formed from the coefficients of y, is called the coefficient matrix. The

matrix

� �
which includes the column consisting of the right-hand sides of the equations sep-

arated by a dashed line, is called the augmented matrix. Note that the unknowns

should always be aligned when forming the coefficient and augmented matrices.

EXAMPLE 3  LINEAR SYSTEMS AND THE AUGMENTED MATRIX
Write a system of linear equations that corresponds to the augmented matrix.

� �
–5 2 –1 � 15

0 –2 1 � –7
�
1
2

�                       1 –1    � 3

2 3 � –7

3 –1 � 17

4 Progress Check
Let

4 8 1
2 �5 3

B � ��8 6   �4�
0 1 �1

Find the following:
a. b11 b. b23 c. b31 d. b42

Answers
a. 4 b. 3 c. �8 d. 1
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SOLUTION
We attach the unknown x to the first column, the unknown y to the second col-

umn, and the unknown z to the third column. The resulting system is

�5x � 2y � z � 15

�2y � z � �7

�
1
2

�x � 2y � z � 23

Now that we have seen how a matrix can be used to represent a system of

linear equations, we next proceed to show how operations on that matrix can

yield the solution of the system. These “matrix methods” are simply a stream-

lining of the methods already studied in the previous chapter.

In Section 7.3, we used three elementary operations to transform a system

of linear equations into triangular form. When applying the same procedures to

a matrix, we speak of rows, columns, and elements instead of equations,

unknowns, and coefficients. The three elementary operations that yield an

equivalent system now become the elementary row operations.

The method of Gaussian Elimination, introduced in Section 7.3, can now

be restated in terms of matrices. By use of elementary row operations we seek

to transform an augmented matrix into a matrix for which aij � 0 when i � j.

The resulting matrix has the following appearance for a system of three linear

equations in three unknowns:

� �
Since this matrix represents a linear system in triangular form, back-substitution

provides a solution of the original system. We will illustrate the process with an

example.

* * * � *

0 * * � *

0 0 * � *

Elementary Row Operations
The following elementary row operations transform an augmented

matrix into another augmented matrix. These augmented matrices cor-

respond to equivalent linear systems.

1. Interchange any two rows.

2. Multiply each element of any row by a constant k ≠ 0.

3. Replace each element of a given row by the sum of itself plus k
times the corresponding element of any other row.
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EXAMPLE 4  ELEMENTARY ROW OPERATIONS AND GAUSSIAN
ELIMINATION
Solve the system.

0x � 0y � 4z � �4

2x � 2y � 0z � �2

3x � 2y � 3z � �3

SOLUTION
We describe and illustrate the steps of the procedure.
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Gaussian Elimination

Step 1. Form the augmented matrix.

Step 2. If necessary, interchange rows to make sure
that a11, the first element of the first row, is
nonzero. We call a11 the pivot element and
row 1 the pivot row.

Step 3. Arrange to have 0 as the first element of
every row below row 1. This is done by
replacing row 2, row 3, and so on by the
sum of itself and an appropriate multiple of
row 1.

Step 4. Repeat the process defined by Steps 2 and 3,
allowing row 2, row 3, and so on to play the
role of the first row. Thus, row 2, row 3,
and so on serve as the pivot rows, with a22

the pivot element of row 2, a33, the pivot ele-
ment of row 3, and so on.

Step 5. The corresponding linear system is in trian-
gular form. Solve by back-substitution.

Step 1. The augmented matrix is

� �
Step 2. We see that a11 � 1 ≠ 0. The pivot element

is a11 and is shown in bold.

Step 3. To make a21 � 0, replace row 2 by the sum
of itself and (�2) times row 1. To make a31

� 0, replace row 3 by the sum of itself and
(�3) times row 1.

� �
Step 4. Since a22 � 4 ≠ 0, it serves as the next pivot

element and is shown in bold. To make a32

� 0, re place row 3 by the sum of itself and
(��

1
4

�) times row 2.

� �
Step 5. The third row of the final matrix yields

��
2
4
7
�z � ��

2
2
7
�

z � 2

1 –1 4 � 4

2 2 –1 � 2

3 –2 3 � –3

1 –1 4 � 4

0 4 –9 � –6

0 1 –9 � –15

1 –1 4 � 4

0 4 –9 � –6

0 0 –27/4 � –27/2
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Step 5. Substituting z � 2, we obtain from the sec-
ond row of the final matrix

4y � 9z � �6

4y � 9(2) � �6

y � 3

Step 5. Substituting y � 3 and z � 2, we obtain
from the first row of the final matrix

x � y � 4z � 4

x � 3 � 4(2) � 4

x � �1

Step 5. The solution is x � �1, y � 3, z � 2.

Note that we described the process of Gaussian Elimination in a manner

that applies to any augmented matrix that is n × (n � 1). Thus, Gaussian

Elimination may be used on any system of n linear equations in n unknowns

that has a unique solution.

It is also permissible to perform elementary row operations in ways to sim-

plify the arithmetic. For example, you may wish to interchange rows or multiply

a row by a constant to obtain a pivot element equal to 1. We will illustrate these

ideas with an example.

EXAMPLE 5  ELEMENTARY ROW OPERATIONS AND GAUSSIAN
ELIMINATION
Solve by matrix methods.

�4x � 2y � 3z � 15w � �04

�4x � 0y � 8z � 15w � �14

4 Progress Check
Solve the linear system by matrix methods.

2x � 4y � z � 0

x � 2y � 2z � 2

�5x � 8y � 3z � �2

Answers
x � 6, y � �2, z � 4



SOLUTION
We begin with the augmented matrix and perform a sequence of elementary row operations. The pivot ele-

ment is shown in bold.

Write the augmented matrix. Note that a11 � 0.

Interchange rows 1 and 3 so that a11 � 1.

To make a21 � 0, replace row 2 by the sum of
itself and (�4) times row 1. To make a41 � 0,
replace row 4 by the sum of itself and row 1.

Multiply row 2 by �
1
5

� so that a22 � 1.

To make a32 � 0, replace row 3 by the sum of itself and (�2) times

row 2. To make a42 � 0, replace row 4 by the sum of itself and 3

times row 2.

Interchange rows 3 and 4 so that the next pivot is a33 � �1.

To make a43 � 0, replace row 4 by the sum of itself and 3 times
row 3.

0�x � 0y � 2z � 15w � �09

0�x � 2y � 3z � 06w � �10
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� �
1 –1 2 0 � 9

0 1 0 3 � –10

0 0 3 –6 � 24

0 0 –1 3 � –11

� �
1 –1 2 0 � 9

0 1 0 3 � –10

0 0 –1 3 � –11

0 0 0 3 � –9

� �
1 –1 2 0 � 9

0 5 0 15 � –50

0 2 3 0 � 4

0 –3 –1 –6 � 19

� �
0 2 3 0 � 4

4 1 8 15 � –14

1 –1 2 0 � 9

–1 –2 –3 –6 � 10

� �
1 –1 2 0 � 9

4 1 8 15 � –14

0 2 3 0 � 4

–1 –2 –3 –6 � 10

� �
1 –1 2 0 � 9

0 1 0 3 � –10

0 0 – 1 3 � –11

0 0 3 –6 � 24

� �
1 –1 2 0 � 9

0 1 0 3 � –10

0 2 3 0 � 4

0 –3 –1 –6 � 19



The last row of the matrix indicates that

3w � �9

3w � �3

The remaining unknowns are found by back-substitution.

The solution is x � 4, y � �1, z � 2, w � �3.

Gauss-Jordan Elimination

There is an important variant of Gaussian Elimination known as Gauss-Jordan

Elimination. The objective of this variant is to transform a linear system into a

form that yields a solution without back-substitution. For a 3 × 3 system that

has a unique solution, the final matrix and equivalent linear system look like

this:

� �
The solution is then seen to be x � c1, y � c2 and z � c3.

The execution of the Gauss-Jordan Method is essentially the same as that of

Gauss ian Elimination with these exceptions:

1. The pivot elements are always required to be equal to 1.

2. All elements in a column other than the pivot element are forced to be 0.

These objectives are accomplished by the use of elementary row operations as

illustrated in the following example.

EXAMPLE 6  GAUSS-JORDAN ELIMINATION
Solve the linear system by the Gauss-Jordan Method.

0x � 3y �2z � 12

2x � 0y � 4z � �1

0x � 3y � 2z � �8

�z � 3w � �11 y � 3w � �10 x � y � 2z � 9
�z � 3(�3) � �11 y � 3(�3) � �10 x � (�1) � 2(2) � 9

z � 2 y � �1 x � 4

0x � 0y � 0z � c1

0x � 0y � 0z � c2

0x � 0y � 0z � c3

c1

c2

c3

�
�
�

0
0
1

0
1
0

1
0
0
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Third Row of Second Row of First Row of
Final Matrix Final Matrix Final Matrix



SOLUTION
We begin with the augmented matrix. At each stage, the pivot element is shown

in bold and is used to force all elements in that column other than the pivot ele-

ment itself to be zero.

The pivot element is a11.

To make a21 � 0, replace row 2 by the sum of

itself and �2 times row 1. To make a31 � 0,

replace row 3 by the sum of itself and �1

times row 1.

Replace row 2 by the sum of itself and �1

times row 3 to yield the next pivot, a22 � 1.

To make a12 � 0, replace row 1 by the sum of

itself and 3 times row 2. To make a32 � 0,

replace row 3 by the sum of itself and �6

times row 2.

Multiply row 3 by �
2
1
0
� so that a33 � 1.

To make a13 � 0, replace row 1 by the sum of

itself and 10 times row 3. To make a23 � 0,

replace row 2 by the sum of itself and 4 times

row 3.

We see the solution directly from the final matrix: x � 2, y � �3, and z � �
1
2

�.
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� �
1 –3 2 � 12

2 1 –4 � –1

1 3 –2 � –8

� �
1 –3 2 � 12

0 7 –8 � –25

0 6 –4 � –20

� �
1 –3 2 � 12

0 1 –4 � –5

0 6 –4 � –20

� �
1 0 –10 � –3

0 1 –4 � –5

0 0 20 � 10

� �
1 0 0 � 2

0 1 0 � –3

0 0 1 � 1/2

� �
1 0 –10 � –3

0 1 –4 � –5

0 0 1 � 1/2



EXAMPLE 7  GAUSS-JORDAN ELIMINATION 
USING THE GRAPHING CALCULATOR

Consider the system

0.03x � y � 0.07z � 0.89

x � 0.01y � 0.12z � 1.23

1.02x � 1.02y � z � 2

The augmented matrix for this system is

� �
After entering this matrix into the graphing calculator and naming it A, we

select reduced row echelon form from the MATRIX MATH menu:

0.03 1 – 0.07 0.89

1  –0.01 0.12 1.23

1.02 –1.02 1 2

508 Chapter 8 n Matrices, Linear Systems, and Determinants

Graphing Calculator Power User’s Corner

Reduced Row Echelon Form
Your graphing calculator can take an augmented matrix and return the reduced

row echelon form required by Gauss-Jordan Elimination. As you will see in

Example 7, the dashed line customarily found in an augmented matrix does not

appear. Your graphing calculator is a powerful tool for solving systems of equa-

tions. However, you must be able to interpret the information it gives you. Recall

the cases in which there are either infinitely many solutions, or no solution.
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Here is the result:

The solution is (1, 1, 2).

Exercise Set 8.1
In Exercises 1–6, state the dimension of each
matrix.

1. 2. [1  2  3  �1]

3.

� �
4. � �

5.

� �
6.

7. Given

A �

find
a. a12 b. a22 c. a23 d. a34

8. Given

B � � �
find

a. b13 b. b21 c. b33 d. b42

In Exercises 9–12, write the coefficient matrix
and the augmented matrix for each given linear
system.

9. 3x � 2y � 12 10. 3x � 4y � 15
5x � y � �8 4x � 3y � 12

11. �
1
2

�x � y � z � 4 12. 2x � 3y � 4z � 10
2x � y � 4z � 6 �3x � y � 12
4x � 2 y � 3z � 8 5x � 2y �  z � �8

In Exercises 13–16, write the linear system whose
augmented matrix is given.

13. � � 14. � �

15.� �
16.

� �
In Exercises 17–20, the augmented matrix corre-
sponding to a linear system has been transformed
to the given matrix by elementary row operations.
Find a solution of the original linear system.

17.

� �
18. � �
19.

� �
20.

� �

[32   
�1

4]
–1
3
2

4
5
2

�8
     

 2
�1

3
�1

     

3
4
6
2

4
3

�4
    

   2
1

�2
       

1
5
3

[32    
�1

8
    

2
4
    

6
1]

[ 3
8
1
    

�4
7
0
     

�2
6
9
     

   5
2

�3
]

�5
4
0

�3
     

  6
1
2
9
     

   8
3

�6
7

4 0 � 2
–7 8 � 3

3/2 6� –1
4 5� 3

1 1 3 � –4
–3 4 0 � 8
2 0 7 � 6

4 8 3 � 12
1 –5 3 �–14
0 2 7 � 18

1 2 0 � 3
0 1 –2 � 4
0 0 1 � 2

1 0 2 � –1
0 1 3 � 2
0 0 1 � 5

1 –2 1 � 3
0 1 3 � 2
0 0 1 � –4

1 –4 2 � –4
0 1 3 � –2
0 0 1 � 5



In Exercises 21–30, solve the given linear system
by applying Gaussian Elimination to the aug-
mented matrix.

21. x � 2y � �4 22. 2x � y � �1
2x � 3y � 13 3x � y � �7

23. x � y � z � 4
2x � y � 2z � 11
x � 2y � 2z � 6

24. x � y � z � �5
3x � y � 2z � �5
2x � y � z � �2

25. 2x � y � z � 9
x � 2y � 2z � �3

3x � 3y � 4z � 11

26. 2x � y � z � �2
�2x � 2y � 3z � 2

3x � y � z � �4

27. �x � y � 2z � 9
x � 2y � 2z � �7

2x � y � z � �9

28. 4x � y � z � �1
x � y � 2z � 3

�x � 2y � z � 0

29. x � y � z � 2w � 0
2x � y � w � �2
3x � 2z � �3
�x � 2y � 3w � 1

30. 2x � y � 3w � �7
3x � 2z � w � 0

�x � 2y � 3w � 10
�2x � 3y � 2z � w � 7

In Exercises 31–40, solve the linear systems of
Exercises 21–30 by Gauss-Jordan Elimination
applied to the augmented matrix.

In Exercises 41–50, solve the linear systems of
Exercises 21–30 in your graphing calculator by
using the reduced row echelon option under your
MATRIX menu.

51. A black-and-white digital image has 30 rows
of 18 pixels each. If the image is represented
as a matrix with each entry the value of the
corresponding pixel, what are the dimen-
sions of the matrix?

52. Mathematics in Writing: In your own words,
describe the difference between Gaussian elim-
ination and Gauss-Jordan elimination. Which
do you prefer? Why?
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8.2  Matrix Operations and Applications

Now that we have defined a matrix, we can define various operations with

matrices. First we begin with the definition of equality.

EXAMPLE 1  MATRIX EQUALITY
Solve for all unknowns.

=

SOLUTION
Equating corresponding elements, we must have

�2 � z or   z � �2

Equality of Matrices
Two matrices are equal if they are of the same dimension and their

corresponding entries are equal.

� �–2 2x 9
y – 1 3 –4s � �z 6 9

–4 r 7



2x � 6   or   x � 3

y � 1 � �4  or  y � �3

3 � r or r � 3

�4s � 7  or s � ��
7
4

�

Matrix addition can be performed only when the matrices are of the same
dimension.

EXAMPLE 2  MATRIX ADDITION
Given the following matrices,

A � [2  �3  4]          B � [5  3  2]

C � D �

find (if possible):

a. A � B b. A � D c. C � D

SOLUTION
a. Since A and B are both 1 × 3 matrices, they can be added, giving

A � B � [2 � 5   �3 � 3   4 � 2] � [7  0  6]

b. Matrices A and D are not of the same dimension and cannot be added.

c. C and D are both 2 × 3 matrices. Thus,

C � D � � � �

A matrix is a way of writing the information displayed in a table. For exam-

ple, Table 1 displays the current inventory of the Quality TV Company at its var-

ious outlets.

17
2

8
4

8
�3

Matrix Addition
The sum A � B of two m × n matrices A and B is the m × n matrix

obtained by adding the corresponding elements of A and B.

TABLE 1  Inventory of Television Sets

17 inch 140 84 25
19 inch 62 17 48
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� �1 6 –1
–2 4 5 � �16 2 9

4 –7 –1

� �1 + 16   6 + 2 –1 + 9
–2 + 4 4 + (–7) 5 + (–1)

TV Sets Boston Miami Chicago



The same data is displayed by the matrix S, where we understand the columns

to represent the cities and the rows to represent the sizes of the television sets.

S � � �
If the matrix

M � � �
specifies the number of sets of each size received at each outlet the following

month, then the matrix

T � S � M � � �
gives the revised inventory.

Suppose the salespeople at each outlet are told that half of the revised inven-

tory is to be placed on sale. To determine the number of sets of each size to be

placed on sale, we need to multiply each element of the matrix T by 0.5. When

working with matrices, we call a real number such as 0.5 a scalar and define

scalar multiplication as follows:

EXAMPLE 3  SCALAR MULTIPLICATION
The matrix Q

Regular  Unleaded  Premium.....

Q � � �
shows the quantity (in thousands of gallons) of the principal types of gasolines

stored by a refiner at two different locations. It is decided to increase the quanti-

ty of each type of gasoline stored at each site by 10%. Use scalar multiplication

to determine the desired inventory levels.

SOLUTION
To increase each entry of matrix Q by 10%, we compute the scalar product

1.1Q.

25
48

84
17

140
62

15
60

46
25

30
50

40
108

130
42

170
112

City A
City B

60
40

250
180

130
110

Scalar Multiplication
To multiply a matrix A by a scalar c, multiply each entry of A by c.
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1.1Q � 1.1� � � � �
� � �

We denote A � (�1)B by A � B and refer to this as the difference of A and B.

EXAMPLE 4  MATRIX SUBTRACTION
Using the matrices C and D of Example 2, find C � D.

SOLUTION
By definition,

C � D �                                                        � 

Matrix Multiplication

We will use the Quality TV Company again, this time to help us arrive at a def-

inition of matrix multiplication. Suppose

Boston Miami Chicago

B � � �
is a matrix representing the number of television sets in stock at the end of the

year. Further, suppose the cost of each 17-inch set is $80 and the cost of each

19-inch set is $125. To find the total cost of the inventory at each outlet, we

multiply the number of 17-inch sets by $80, the number of 19-inch sets by

$125, and add the two products. If we let

A � [80  125]

be the cost matrix, we seek to define the product

AB � [80  125]  � �

17 inch
19 inch

70
20

85
100

60
40

Matrix Subtraction
The difference A � B of two m × n matrices A and B is the m × n

matrix obtained by subtracting each entry of B from the correspon-

ding entry of A.

70
20

85
100

60
40

143
121

275
198

66
44

1.1(60)
1.1(40)

1.1(250)
1.1(180)

1.1(130)
1.1(110)

60
40

250
180

130
110

Chapter 8 n Matrices, Linear Systems, and Determinants 513

� �1 – 16 6 – 2 –1 – 9
–2 –  4 4 – (–7) 5 – (–1) � �–15 4 –10

–6 11 6



so that the result is a matrix displaying the total inventory cost at each outlet. 

We need to calculate for

the Boston outlet  (80)(60) � (125)(40) � 9800

the Miami outlet (80)(85) � (125)(100) � 19,300

the Chicago outlet (80)(70) � (125)(20) � 8100

The total inventory cost at each outlet can then be displayed by the 1 × 3 matrix

C � [9800  19,300  8100]

which is the product of A and B.  Thus,

AB � [80  125]  � �
� [(80)(60) � (125)(40)  (80)(85) � (125)(100) (80)(70) �(125)(20)]

� [9800  19,300  8100] � C

This example illustrates the process for multiplying a 1 × 2 matrix times a 2 × 3

matrix. The general definition of matrix multiplication utilizes the same basic

idea. That is, multiplication of matrices requires calculating sums of products. In

this example, the first matrix had two columns and the second matrix had two

rows. If we denote the elements of the first matrix as

A � [a11 a12]

and the elements of the second matrix as

B � � �
then matrix multiplication requires that we calculate

[a11b11 � a12b21 a11b12 � a12b22 a11b13 � a12b23]

If we denote the elements of this product by

C � [c11 c12 c13]

then we see that
c1k � a11b1k � a12b2k for k � 1, 2, 3

70
20

85
100

60
40

b13

b23

b12

b22

b11

b21

Matrix Multiplication
The product AB of m × n matrix A � [aij] and the n × r matrix B �

[bjk] is obtained by forming the m × r matrix C � [cik], where

cik � ai1b1k � ai2b2k � · · · � ainbnk

for i � 1, 2, . . . , m and k � 1, 2, . . . , r.
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It is important to note that the product AB only exists if the number of

columns of A equals the number of rows of B. See Figure 1.

A B

m × n n × r

To form the matrix product AB,

these must be equal.

Dimension of the product AB

FIGURE 1 Dimension of the Product Matrix

EXAMPLE 5  MATRIX MULTIPLICATION
Find the product AB if

A � B �

SOLUTION

AB �

�

EXAMPLE 6  MATRIX MULTIPLICATION
Given the matrices

A � B � C � D � � �

�2 �1 2

4 3 1

5 �4

3 1

�1 0

�15 7

28 �13

4 Progress Check
Find the product AB if

A � � � B � � �
Answers

AB � � �

1
2
3
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� �4 –6 –2 4

2 0 1 –5

� �10 –12 –3 3

22 –18 –1 –13

� �2 1

3 5

� �(2)(4) + (1)(2) (2)(–6) + (1)(0) (2)(–2) + (1)(1) (2)(4) + (1)(–5)
(3)(4)+ (5)(2) (3)(–6) + (5)(0) (3)(–2) + (5)(1) (3)(4) + (5)(–5)

� �1 –1

2 3 � �5 –3

–2 2 � �3 –1 –2
1 0 4
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a. Show that AB ≠ BA.

b. Determine the dimension of CD.

SOLUTION

a. AB �

BA �

Since the corresponding elements of AB and BA are not equal, AB ≠ BA.

b. The product of a 2 × 3 matrix and a 3 × 1 matrix is a 2 × 1 matrix.

We saw in Example 6 that AB ≠ BA; that is, the commutative law does

not hold for matrix multiplication. However, the associative law A(BC) �

(AB)C does hold when the dimensions of A, B, and C permit us to find the

necessary products.

Matrices and Linear Systems

Matrix multiplication provides a convenient shorthand for writing a linear sys-

tem. For example, the linear system

2x � 0y � 2z � 0 3

3x � 2y � 0z � �1

0x � 0y � 3z � 14

4 Progress Check
If possible, find the dimension of CD and of CB, using the 

matrices of Example 6.

Answers
2 × 1; not defined

4 Progress Check
Verify that A(BC) � (AB)C for the matrices A, B, and C of Example 6.

� � � � �–1 –14

2 8

(5)(1) + (–3)(2) (5)(–1) + (–3)(3)
(–2)(1) + (2)(2) (–2)(–1) + (2)(3)

� � � � �7 –5
4 0

(1)(5) + (–1)(–2) (1)(–3) + (–1)(2)
(2)(5) + (3)(–2) (2)(–3) + (3)(2)
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can be expressed as

AX � B

where

A � X � � � B � � �
To verify this, form the matrix product AX and then apply the definition of

matrix equality to the matrix equation AX � B.

EXAMPLE 7  MATRICES AND LINEAR SYSTEMS
Write the linear system AX � B if

A � X � � � B � � �
SOLUTION
Equating corresponding elements of the matrix equation AX � B yields

�2x � 3y � 16

�2x � 4y � �3

16
�3

x
y

3
�1
14

x
y
z� �

2 –1 –2

3 2 1

1 1 –3

� �–2 3

1 4

Exercise Set 8.2
1. For what values of a, b, c, and d are the

matrices A and B equal?

A � B �

2. For what values of a, b, c, and d are the
matrices A and B equal?

A � B �

In Exercises 3–18, the following matrices are
given:

A � � � B � 

C � � � D �

E � F �

G �

In Exercises 3–18, if possible, compute the indicat-
ed matrix.

3. C � E 4. C � E
5. 2A � 3G 6. 3G � 4A

7. A � F 8. 2B � D

9. AB 10. BA

11. CB � D 12. EB � FA

13. DF � AB 14. AC � 2DG

15. DA � EB 16. FG � B

17. 2GE � 3A 18. AB � FG

19. If

A � B �

C �

show that AB � AC.

1
1

3
4

2
�3

3
2
5

2
�1

2

1
4
3

� �a b

6 – 2 � �3 – 4

c d

� �–1 6

5 10� �a + b 2c
a c – d

� �
2 –1
3 2
4 1

� �–3 2
4 1

� �
1 –3 2
3 2 4
1 1 2 � �1 3

–2 4

� �–2 4 2
1 0 3

� �–2 3
2 –3 � �–1 3

2 0

� �–4 –3
0 –4



20. If

A � and B �                                

show that AB ≠ BA.

21. If

A � and B �

show that
AB � � �

22. If

A � � �
show that

A · A � � �
23. If

I � � � and

A � � �
show that AI � A and IA � A.

24. Pesticides are sprayed on plants to eliminate
harmful insects. However, some of the pesti-
cide is absorbed by the plant, and the pesti-
cide is then absorbed by herbivores (plant-eat-
ing animals, such as cows) when they eat the
plants that have been sprayed. Suppose that
we have three pesticides and four plants, and
that the amounts of pesticide absorbed by the
different plants are given by the matrix

Plant 1 Plant 2Plant 3Plant 4

A � � �
where aij denotes the amount of pesticide i in
milli grams that has been absorbed by plant j.
Thus, plant 4 has absorbed 5 milligrams of
pesticide 3. Now suppose that we have three
herbivores and that the numbers of plants
eaten by these animals are given by the matrix

Herbivore 1 Herbivore 2 Herbivore 3

B � � �
How much of pesticide 2 has been absorbed
by  herbivore 3?

25. What does entry (2, 3) in the matrix product
AB of Exercise 24 represent?

In Exercises 26–29, find the matrices A, X, and B
so that the matrix equation AX � B is equivalent
to the given linear system.

26. �7x � 2y � �6 27. 3x � 4y � �3
�2x � 3y � �2 3x � 0y � �5

28. 5x � 2y � 3z � 4
2x � �

1
2

�y � 0z � 10
x � y � 5z � �3

29.` 3x � 0y � 4z � �5
2x � 2y � �

3
4

�z � �1
x � �

1
4

�y � 0z � ��
1
2

�

In Exercises 30–33, write the linear system that is
represented by the matrix equation AX � B.

30. A � X � � � B � � �
31. A � X � � � B � � �

32. A � X � � � B � � �
33. A � X �� �B �� �
34. The m × n matrix all of whose elements are

zero is called the zero matrix and is denoted
by 0. Show that A � 0 � A for every m × n
matrix A.

35. The square matrix of order n, such that aij �

1 and aij � 0 when i ≠ j, is called the identity
matrix of order n and is denoted by In.

0
0

0
0

1
0

0
1

0
1

1
0

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
0
1

0
1
0

1
0
0

Pesticide 1
Pesticide 2
Pesticide 3

3
4
5

4
2
1

2
5
3

3
6
4

20
10
8

12

30
15
12
4

18
12
16
6

Plant 1
Plant 2
Plant 3
Plant 4

x
y

–2

10

x1

x2

0

2

x
y
z

3

–3

2

x1

x2

x3

2

–5

4
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� �1 2
3 2 � �2 –1

–3 4

� �–2 3
2 –3 � �3 6

2 4

� �2 –1
–3 4

� �1 –5
4 3

� �1 7 –2
3 6 1

–4 2 0

� �4 5 –2
0 3 –1
0 0 2
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(Note: The definition indicates that the diag-
onal elements are all equal to 1 and all ele-
ments off the diagonal are 0.) Show that AIn

� InA for every square matrix A of order n.

36. The matrix B, each of whose entries is the
negative of the corresponding entry of
matrix A, is called the ad di tive inverse of the
matrix A. Show that A � B � 0 where 0 is
the zero matrix. (See Exercise 34.)

37. A square black-and-white digital image with
9 pixels may be represented as a matrix, like
matrix A in Exercise 23. Suppose the image
has 4 bits per pixel. Each bit has a value of 0
or 1. Each entry in A must be an integer
between 0 (darkest black) to 24 � 1, or 15
(whitest white). (Note: The integers from 0 to
15 represent 16 possible values.)

Suppose A � � �

The contrast is increased by multiplying each
entry by a scaling factor. Find the matrix 2A,
representing an image with increased contrast.

38. The digital negative image of an image is
found by subtracting each element of the
image matrix from its maximum possible
value. The i,j entry of the matrix N for the
digital negative of A in Exercise 37 is

nij � 15 � aij

Find the matrix N.

39. We can add one image to another and repre-
sent the resulting image by the matrix sum of
the image matrix for each. Find the matrix
for the image that results from adding the
image represented by A to its negative N.
Describe the image qualitatively. What
would it look like? 6

1
3

4
0
2

0
5
7

If a ≠ 0, then the linear equation ax � b can be solved by multiplying both
sides by the reciprocal of a. Thus, we obtain x � (�

1
a

�)b. It would be nice if we
could multiply both sides of the matrix equation AX � B by the “reciprocal of
A.” Unfortunately, a matrix has no reciprocal. However, we shall discuss a
notion that, for a square matrix, provides an analogue of the reciprocal of a
real number and will enable us to solve the linear system in a manner distinct
from the Gauss-Jordan Method discussed earlier in this chapter.

In this section we confine our attention to square matrices. The n × n matrix

In �� �
that has 1 for each entry on the main diagonal and 0 elsewhere is called the

identity matrix. Examples of identity matrices follow:

0
0
·
·
·

1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

0
0
·
·
·

0

0
1
·
·
·

0

1
0
·
·
·

0

8.3  Inverses of Matrices



I2 � � � I3 � � � I4 � � �
If A is any n × n matrix, we can show that

(See Exercise 35, Section 8.2.) Thus, In is the matrix analogue of the real num-

ber 1.

An n × n matrix A is called invertible, or nonsingular, if we can find an n

× n matrix B such that

The matrix B is called an inverse of A.

EXAMPLE 1  VERIFYING INVERSES
Show that A and B are inverses of one another where

A � and    B �

SOLUTION
Since

AB � BA � � �
we conclude that A is an invertible matrix and that B is an inverse of A. (Verify

the above equation.) Note that if B is an inverse of A, then A is an inverse of B.

It can be shown that if an n × n matrix A has an inverse, it can have only

one inverse. We denote the inverse of A by A-1. Thus, we have

AIn � InA � A

AB � BA � In

0
0
1

0
1
0

1
0
0

0
1

1
0

0
0
1
0

0
1
0
0

1
0
0
0

0
0
0
1

0
1

1
0

AA�1 � In and   A�1A � In
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� �2 1
3 2 � �2 –1

–3 2



4 Progress Check
Verify that the matrices

A � ��42
5
2

�� and   B �

are inverses of each other.

���
�

1
1

�

�

2 �5__
2

Note that the products AA�1 and A�1A yield the identity matrix In, whereas the

products aa�1 � a(�
1
a

�) and a�1a � (�
1
a

�)a yield the identity element 1 for any real

number a ≠ 0. For this reason, A�1 may be thought of as the matrix analogue of

the reciprocal �
1
a

�.

WARNING
If a ≠ 0 is a real number, then a�1 has the property that aa�1 � a�1a � 1. Since

a�1 � �
1
a

�, we may refer to a�1 as the inverse, or reciprocal, of a. Although the

matrix A�1 is the inverse of the n × n matrix A, since AA�1 � A�1A � In, it can-

not be referred to as the reciprocal of A, since matrix division is not defined.

We now develop a practical method for finding the inverse of an invertible

matrix. Suppose we want to find the inverse of the matrix

A � � �
Let the inverse be denoted by

B � � �
Then we must have

AB � I2
(1)

and

BA � I2
(2)

Equation (1) now becomes

� � � � � � �
or

=

3
5

1
2

b2

b4

b1

b3

0
1

1
0

b2

b4

b1

b3

3
5

1
2
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� �b1 + 3b3 b2 + 3b4

2b1 + 5b3 2b2 + 5b4 � �1 0
0 1



Since two matrices are equal if, and only if, their corresponding entries are equal,

we have

�
0
2
b
b

1

1

�

�

3
5
b
b

3

3

�

�

1
0

�

(3)

and

�
0
2
b
b

2

2

�

�

3
5
b
b

4

4

�

�

0
1

�

(4)

We solve the linear systems (3) and (4) by Gauss-Jordan Elimination. We begin

with the augmented matrices of the linear systems and perform a sequence of ele-

mentary row operations as follows:

(3) (4)
Write the augmented matrices of (3)

and (4).

To make a21 � 0, replace row 2

with the sum of itself and �2 times

row 1.

Multiply row 2 by �1 to obtain 

a22 � 1.

To make a12 � 0, replace row 1

with the sum of itself and �3 times

row 2.

Thus, b1 � �5 and b3 � 2 is the solution of (3), and b2 � 3 and b4 � �1 is the

solution of (4). Check that

B �

also satisfies the requirement BA � I2 of Equation (2).

Observe that the linear systems (3) and (4) have the same coefficient

matrix (which is also the same as the original matrix A) and that an identical

sequence of elementary row operations was performed in the Gauss-Jordan

Elimination. This suggests that we can solve the systems at the same time. We

write the coefficient matrix A and next to it list the right-hand sides of (3) and

(4) to obtain the matrix

(5)
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� �1 3 � 1
2 5 � 0 � �1 3 � 0

2 5 � 1

� �1 3 � 1
0 –1 � –2 � �1 3 � 0

0 –1 � 1

� �1 3 � 1
0 1 � 2 � �1 3 � 0

0 1 � –1

� �1 0 � –5
0 1 � 2 � �1 0 � 3

0 1 � –1

� �–5 3
2 –1

� �1 3 � 1 0
2 5 � 0 1



Note that the columns to the right of the dashed line in (5) form the identity

matrix I2. Performing the same sequence of elementary row operations on

matrix (5) as we did on matrices (3) and (4) yields

(6)

Then A�1 is the matrix to the right of the dashed line in (6).

The procedure outlined for the 2 × 2 matrix A applies in general. Thus,

we have the following method for finding the inverse of an invertible n × n

matrix A.

EXAMPLE 2  COMPUTING INVERSES
Find the inverse of

A � � �
SOLUTION
We form the 3 × 6 matrix [A�I3] and transform it by elementary row opera-

tions to the form [I3�A�1]. The pivot element at each stage is shown in bold.

Write matrix A augmented by I3.

To make a21 � 0, replace row 2 with

the sum of itself and �2 times row 1.

To make a31 � 0, replace row 3 with

the sum of itself and �1 times row 1.

Computing A�1

Step 1. Form the n × 2n matrix [A�In] by adjoining the identity

matrix In to the given matrix A.

Step 2. Apply elementary row operations to the matrix [A�In] to
transform the matrix A to In.

Step 3. The final matrix is of the form [In�B] where B is A�1.

3
7
1

2
5
1

1
2
1
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� �1 0 � –5 3
0 1 � 2 –1

� �
1 2 3 � 1 0 0
2 5 7 � 0 1 0
1 1 1 � 0 0 1

� �
1 2 3 � 1 0 0
0 1 1 � –2 1 0
0 –1 –2 � –1 0 1



To make a12 � 0, replace row 1 with

the sum of itself and �2 times row 2.

To make a32 � 0, replace row 3 with
the sum of itself and row 2.

Multiply row 3 by �1.

To make a13 � 0, replace row 1 with

the sum of itself and �1 times row 3.

To make a23 � 0, replace row 2 with

the sum of itself and �1 times row 3.

The final matrix is of the form [I3�A�1] that is,

A�1 �

We now have a practical method for finding the inverse of an invertible

matrix, but we do not know whether a given square matrix has an inverse.

It can be shown that if the preceding procedure is carried out with the

matrix [A�In] and we arrive at a point at which all possible candidates for

the next pivot element are zero, then the matrix is not invertible; and we

may stop our calculations.

EXAMPLE 3  COMPUTING INVERSES
Find the inverse of

A � � �
SOLUTION
We begin with [A�I3].

To make a31 � 0, replace row 3 by

the sum of itself and 3 times row 1.

Note that a22 � a32 � 0 in the last matrix. We cannot perform any ele-

mentary row operations upon rows 2 and 3 that will produce a nonzero pivot

element for a22. We conclude that the matrix A does not have an inverse.

6
2

�9

2
0

�6

1
0

�3
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� �
1 0 1 � 5 –2 0
0 1 1 � –2 1 0
0 0 1 � 3 –1 –1

� �
1 0 0 � 2 –1 1
0 1 0 � –5 2 1
0 0 1 � 3 –1 –1

� �2 –1 1
–5 2 1
3 –1 –1

� �
1 0 1 � 5 –2 0
0 1 1 � –2 1 0
0 0 –1 � –3 1 1

� �1 2 6 � 1 0 0
0 0 2 � 0 1 0

–3 –6 –9 � 0 0 1

� �1 2 6 � 1 0 0
0 0 2 � 0 1 0
0 0 9 � 3 0 1



Solving Linear Systems

Consider a linear system of n equations in n unknowns.

a11x1 � a12x2 � · · · � a1nxn � b1

a21x1 � a22x2 � · · · � a2nxn � b2

� � � � (7)

an1x1 � an2x2 � · · · � annxn � bn

As has already been pointed out in Section 2 of this chapter, we can write the

linear system (7) in matrix form as

AX � B (8)

where

A � � � X � � � B � � �
Suppose now that the coefficient matrix A is invertible so that we can compute

A�1. Multiplying both sides of (8) by A�1, we have

A�1(AX) � A�1B

(A�1A)X � A�1B Associative law

InX � A�1B A�1A � In

X � A�1B InX � X

Thus, we have the following result:

4 Progress Check
Show that the matrix A is not invertible.

1  2 �3
A � �3  2 1�

5  6 �5

b1

b2

�
bn

x1

x2

�
xn

a1n

a2n

�
ann

· · ·
· · ·

· · ·

a12

a22

�
an2

a11

a21

�
an1

If AX � B is a linear system of n equations in n unknowns and if

the coefficient matrix A is invertible, then the system has exactly one

solution, given by

X � A�1B
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WARNING
Since matrix multiplication is not commutative, be careful to write the solution

to the system AX � B as X � A�1B and not X � BA�1.

EXAMPLE 4  SOLVING A SYSTEM OF LINEAR EQUATIONS USING
INVERSES

Solve the linear system by finding the inverse of the coefficient matrix.

x � 2y � 3z � �3

2x � 5y � 7z � 4

x � y � z � 5

SOLUTION
The coefficient matrix

A � � �
is the matrix whose inverse was obtained in Example 2 as

A�1 �

Since

B �

we obtain the solution of the given system as

X � A�1B � �

Thus, x � �5, y � 28, z � �18.

3
7
1

2
5
1

1
2
1

� �2 –1 1
–5 2 1
3 –1 –1

� �–3
4
5

� �–3
4
5 � �–5

28
–18� �2 –1 1

–5 2 1
3 –1 –1



Chapter 8 n Matrices, Linear Systems, and Determinants 527

The inverse of the coefficient matrix is especially useful when we need to

solve a number of linear systems

AX � B1, AX � B2, . . . , AX � Bk

where the coefficient matrix is the same, and the right-hand side changes.

EXAMPLE 5  SOLVING A SYSTEM OF LINEAR EQUATIONS USING
INVERSES
A steel producer makes two types of steel, regular and special. A ton of regular

steel requires 2 hours in the open-hearth furnace and 5 hours in the soaking pit; a

ton of special steel requires 2 hours in the open-hearth furnace and 3 hours in the

soaking pit. How many tons of each type of steel can be manufactured daily if

a. the open-hearth furnace is available 8 hours per day and the soaking pit is

available 15 hours per day?

b. the open-hearth furnace is available 9 hours per day and the soaking pit is

available 15 hours per day?

SOLUTION
Let

x � the number of tons of regular steel to be made

y � the number of tons of special steel to be made

Then the total amount of time required in the open-hearth furnace is

2x � 2y

Similarly, the total amount of time required in the soaking pit is

5x � 3y

4 Progress Check
Solve the linear system by finding the inverse of the coefficient

matrix.

x � 2y � z � 1

x � 3y � 2z � 2

�x � z � �11

Answers
x � 7, y � 1, z � �4



If we let b1 and b2 denote the number of hours that the open-hearth furnace and

the soaking pit are available per day, respectively, then we have

2x � 2y � b1

5x � 3y � b2

or

� � � � � � �
Then

� � � � ��1 � �
Verify that the inverse of the coefficient matrix is

� ��1
�

a. If b1 � 8 and b2 � 15, then

� � �                     � � �

That is, �
3
2

� tons of regular steel and �
5
2

� tons of special steel can be manufac-

tured daily.

b. If b1 � 9 and b2 � 15, then

� � � � � �

That is, �
3
4

� tons of regular steel and �
1
4
5
� tons of special steel can be manu-

factured daily.

b1

b2

x
y

2
3

2
5

b1
b2

2
3

2
5

x
y

2
3

2
5

8
15

x
y

9
15

x
y
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� �
�3/4 1/2

5/4 �1/2

� ��3/4 1/2
5/4 �1/2

� �
�3/4 1/2

5/4 �1/2

� �3/2
5/2

� �
3/4
15/4
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Cryptography is the study of methods for encoding and decoding messages.
One of the very simplest techniques for doing this involves the use of the
inverse of a matrix.

Suppose that Leslie and Ronnie are drug enforcement agents in the New York
City police department and that Leslie has infiltrated a major drug operation. To
avoid detection, the agents communicate with each other by using coded mes-
sages. First, they agree to attach a different number to every letter of the alpha-
bet. For example, they let A be 1, B be 2, and so on, as shown in the accompa-
nying table. Suppose that on Thursday, Ronnie wants to send Leslie the message

STRIKE MONDAY
to indicate that the police will raid the drug operation on the following
Monday. Substituting for each letter, Ronnie sends the message

19, 20, 18, 9, 11, 5, 13, 15, 14, 4, 1, 25 (1)

Unfortunately, this simple code can be easily cracked by analyzing the fre-
quency of letters in the English alphabet. A much better method involves the use
of matrices.

A B C D E F G
◊ ◊ ◊ ◊ ◊ ◊ ◊

1 2 3 4 5 6 7

H I J K L M N
◊ ◊ ◊ ◊ ◊ ◊ ◊

8 9 10 11 12 13 14

O P Q R S T
◊ ◊ ◊ ◊ ◊ ◊

15 16 17 18 19 20

U V W X Y Z
◊ ◊ ◊ ◊ ◊ ◊

21 22 23 24 25 26

First, Ronnie breaks the message (1) into four 3 × 1 matrices

X1 � � � X2 � � � X3 � � � X4 � � �
Sometime ago, Ronnie and Leslie had jointly selected an invertible 3 × 3 matrix such as

A � � �
which no one else knows. Ronnie now forms the 3 × 1 matrices

AX1 � � � AX2 � � � AX3 � � � AX4 � � �
and sends the message

75, 57, 37, 30, 25, 14, 56, 42, 27, 55, 30, 29 (2)

To decode the message, Leslie uses the inverse of matrix A,

A�1 �

and forms

A�1 � � � X1 A�1 � � � X2 A�1 � � � X3 A�1 � � � X4

which, of course, is the original message (1) and which can be understood by using the accompanying table.
If Leslie responds with the message

33, 21, 16, 52, 39, 14, 66, 47, 28, 52, 38, 23
what is Ronnie being told?

4
1

25

13
15
14

9
11
5

19
20
18

2
1
1

1
1
0

1
1
1

55
30
29

56
42
27

30
25
14

75
57
37

55
30
29

56
42
27

30
25
14

75
57
37

� �–1 1 1
0 1 –1
1 –1 0

Focus on Coded Messages



Exercise Set 8.3
In Exercises 1–4, determine whether the matrix B
is the inverse of the matrix A.

1. A � B �

2. A � B �

3. A � B �

4. A � B �

In Exercises 5–10, find the inverse of the given
matrix.

5. 6.

7. 8.

9. 10.

In Exercises 11-18, find the inverse, if possible.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, solve the given linear system
by finding the inverse of the coefficient matrix.

19. 2x � y � 5 20. 2x � 3y � �5
x � 3y � 6 3x � y � �13

21. 3x � y � z � 2 22. 3x � y � z � 10
x � 2y       � 8 2x � y � z � �1

3y � z � �8 �x � y � 2z � 5

23. 2x � y � 3z � �11 24. 2x � 3y � 2z � 13
3x � y � z � �5 4x � 2y � z � 3

x � y � z � �1 y � z � 5

In Exercises 25–34, solve the linear systems in
Exercises 21– 30, Exercise Set 8.1, by finding the
inverse of the  coefficient matrix.

35. Solve the linear systems AX � B1 and AX �

B2, given

A�1 �

B1 � � � B2 � � �
36. Solve the linear systems AX � B1 and AX �

B2, given

A�1 �

B1 � � � B2 � � �
37. Show that the matrix

� �
is not invertible.

38. A trustee decides to invest $500,000 in two
mortgages, which yield 4% and 8% per
year, respectively. How should the $500,000
be invested in the two mortgages if the total
annual interest is to be

a. $30,000?    b. $40,000?    c. $50,000?

(Hint: Some of these investment objectives
cannot be attained.)

39. Many graphing calculators can find the
inverse of a matrix, just by entering the
name of the matrix you have stored and then

4
3

�2

1
�1

5

4
�3
�5

2
�3

2

c
0
f

b
0
e

a
0
d
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� �2 1/2
–1 3

� �3 –1
–2 2 � �

� �1 –1
2 4

1
2

1
4
3
4

1
2

� �1 2 2
–1 3 0
0 2 1 � �3 2 –6

1 1 –2
–2 –2 5

� �
1 0 –2
2 1 3

–4 1 2 � �
1 2 –2

–2 –4 1
0 1 –1

� �
2 1 0
1 1 0
1 1 1

� �
1 –2 3

–1 3 –4
0 5 –4 � �

1 1 0
1 0 0
1 2 2

� �–1 5
2 –4

� �–1 1
–2 1

� �2 0
–1 –2

� �1 1 3
2 –8 –4

–1 2 0

� �
–1 0 0
0 4 0
0 0 2

� �
1 0 –1
2 1 0
0 1 1

� �8 7 –1
–5 –5 1
–4 –4 1

� �1 3
–1 4

� �2 0
0 –3

� �6 –4
9 –6

� �
1 0 –3 0
0 1 0 0

– 1 0 4 0
2 0 –6 1

� �
3 –2 4
2 –1 0
0 4 1

� �1 0 –1
1 2 0

–1 –1 3



hitting the inverse key. The display looks like
this:

Use this method to find the inverse of the
coefficient matrix for the system of equations
in Example 5 in Section 8.1.

40. Now use the inverse you found in Exercise
39 to solve the system, verifying the solution
given at the end of the example.

41. Mathematics in Writing: Explain in your
own words how the inverse of a matrix is
used to solve a system of equations. How is
this process similar to the method for solving
a linear equation in one unknown, discussed
in Section 2.1? How is it different?

[A]
                         [[2 0]
                          [5 1]]
[A]–1

                     [[.5     0]
   [–2.5 1]]

[A]
                         
                         

                     

[[2 0]                         
                         

                     
[A]–1

[[.5     0
   [–2.5 1

                         
                         

                     

[[2 0]
 [5 1]]

[[.5     0]
   [–2.5 1]]
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In this section, we will define a determinant and develop manipulative skills for

evaluating determinants. We will then show that determinants have important

applications and can be used to solve linear systems.

Associated with every square matrix A is a number called the determinant

of A, denoted by ⏐A⏐. If A is 1 × 1, that is, if A � [a11], then we define ⏐A⏐ �

a11. If A is the 2 × 2 matrix

A � � �
the ⏐A⏐ is said to be a determinant of second order and is defined by the rule

EXAMPLE 1  DETERMINANT OF SECOND ORDER
Compute the real number represented by

� �
SOLUTION
We apply the rule for a determinant of second order.

� � � (4)(�1) � (3)(�5) � 11

a12

a22

a11

a21

–5
–1

4
3

⏐A⏐ � �aa1

2

1

1

a
a

1

2

2

2
� � a11a22 � a21a12

–5
–1

4
3

8.4  Determinants



Minors and Cofactors

Consider the 3 × 3 matrix

A � � �
The minor of an element aij is the determinant of the matrix remaining after

deleting the row and column in which the element aij appears. Given the matrix

the minor of the element in row 2, column 3 is

� � � � � � 8 � 0 � 8

The cofactor of the element aij is the minor of the element aij multiplied by

(�1)i�j. Since (�1)i�j is �1 if i � j is even and �1 if i � j is odd, we see that the

cofactor is the minor with a sign attached. The cofactor attaches the sign to the

minor according to this pattern:

� �
EXAMPLE 2  DETERMINING COFACTORS
Find the cofactor of each element in the first row of the matrix.

a13

a23

a33

a12

a22

a32

a11

a21

a31

0
2

4
�3

–2
7
5

0
�6

2

4
1

�3

···
···
···
···
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

4 Progress Check
Compute the real number represented by

a. ����
6
1

�

�

2
2

�� b. ���
1
2

� ��
1
4

���4 �2

Answers
a. 14 b. 0
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� �4 0 –2
1 –6 7

–3 2 5

� �–2 0 12
–4 5 3
7 8 –6
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SOLUTION
The cofactors are

(�1)1�1 � � � � � � �30 � 24 � �54

(�1)1�2 � � � �� � � �(24 � 21) � �3

(�1)1�3 � � � � � � �32 � 35 � �67

The cofactor is the key to the process of evaluating determinants of any order.

–4 3
7 –6

–2 0 12
–4 5 3
7 8 –6

–4 5
7 8

–2 0 12
–4 5 3
7 8 –6

5 3
8 –6

–2 0 12
–4 5 3
7 8 –6

4 Progress Check
Find the cofactor of each entry in the second column of the matrix.

16 �9 3��5 �2 �0�
�3 �4 �1

Answers
cofactor of �9 is �5; cofactor of 2 is �7; cofactor of 4 is �15

Expansion by Cofactors
To evaluate a determinant, form the sum of the products obtained by

multiplying each entry of any row or any column by its cofactor. This

process is called expansion by cofactors.

Consider the matrix
A � � �

and choose the second column. The cofactor of

a12 � �5   is   (�1)1�2 � � � �3

4 –5
3 –1

4 –5
3 –1



and the cofactor of

a22 � �1   is   (�1)2�2 � � � 4

Therefore

⏐A⏐ � (�5)(�3) � (�1)(4) � 15 � 4 � 11

Note that the above is an alternative method for Example 1. In fact, verify the

formula given for a determinant of order 2 at the beginning of this section using

the method of expansion by cofactors, using any row or any column.

Let us illustrate the process for a 3 × 3 matrix.

EXAMPLE 3  EXPANSION BY COFACTORS
Evaluate the determinant of the matrix

using the method of expansion by cofactors.

SOLUTION
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4 –5
3 1

� �–2 7 2
6 –6 0
4 10 –3

Expansion by Cofactors

Step 1. Choose a row or column about which to
expand. (In general, a row or column con-
taining zeros  simplifies the work.)

Step 2. Expand about the cofactors of the chosen
row or column by multiplying each entry of
the row or column by its cofactor. Repeat
the procedure until all determinants are of
order 2.

Step 3. Evaluate the cofactors and form the sum
indicated in Step 2.

Step 1. We expand about column 3.

Step 2. The expansion about column 3 is

(2)(�1)1�3 � �
�(0)(�1)2�3 � �

�(�3)(�1)3�3 � �
Step 3. Using the rule for evaluating a determinant

of order 2, we have
� (2)(1)[(6)(10) � (4)(�6)] � 0 

�(�3)(1)[(�2)(�6) � (6)(7)]
� 2(60 � 24) � 3(12 � 42)

� 258

–2 7
6 –6

–2 7
4 10

6 –6
4 10
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Observe that it was unnecessary for us to calculate the cofactor corresponding

to the 0 element in column 3. We only did it here to reinforce the method of find-

ing cofactors.

Note that expansion by cofactors of any row or any column produces the

same result. This property of determinants can be used to simplify the arith-

metic. The best choice of a row or column about which to expand is generally

the one that has the most zero entries. If an entry is zero, the entry times its

cofactor is also zero, so we do not have to evaluate that cofactor.

EXAMPLE 4  EXPANSION BY COFACTORS
Verify the rule for evaluating the determinant of the matrix of order 3.

� � � a11a22a33 � a11a32a23 � a12a21a33 � a12a31a23 � a13a21a32 �
a13a31a22

SOLUTION
Expanding about the first row, we have

� � � a11 � � � a12 � � � a13 � �
� a11(a22a33 � a32a23) � a12(a21a33 � a31a23) 

� a13(a21a32 � a31a22)

� a11a22a33 � a11a32a23 � a12a21a33 � a12a31a23 

� a13a21a32 � a13a31a22

(Verify this answer using any other column or row.)

a13

a23

a33

a12

a22

a32

a11

a21

a31

a22

a32

a21

a31

a23

a33

a21

a31

a23

a33

a22

a32

a13

a23

a33

a12

a22

a32

a11

a21

a31

4 Progress Check
Find the determinant of the matrix in Example 3 by expanding

about the second row.

Answer
258



The process of expanding by cofactors works for determinants of any order.

If we apply the method to a determinant of order 4, we produce determinants of

order 3; applying the method again results in determinants of order 2.

EXAMPLE 5  EXPANSION BY COFACTORS
Evaluate the determinant of the matrix.

� �
SOLUTION
Expanding about the cofactors of the first column, we have

� � � �3 � � � 1 � �
� �3��4 � � � 6 � ��

� 1 ��1 � � � 2 � ��
� �3[(�4)(9) � 6(�2)] � 1[(�1)(�8) � 2(�30)]

� �3[�36 � 12] � 1[8 � 60]

� �3(�24) � 1(�52) � 124

5 0
4 –6

4 –6
–2 1

–3 5 0 –1
1 2 3 –3
0 4 –6 0
0 –2 1 2

5 0 –1
4 –6 0

–2 1 2

2 3 –3
4 –6 0

–2 1 2

–3 5 0 –1
1 2 3 –3
0 4 –6 0
0 –2 1 2

2 –3
–2 2

3 –3
1 2

4 Progress Check
Show that the determinant of the matrix is equal to zero.

a  b  c�a b  c�
d  e f
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4 Progress Check
Evaluate the determinant of the matrix.

0 �1  0 2
3 0  4 0�0 5  0 �3�
1 0  1 0

Answers
7
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Exercise Set 8.4
In Exercises 1–6, evaluate the determinant of the
given matrix.

1. � � 2. � �
3. � � 4. � �
5. � � 6. � �

In Exercises 7–10, let

A � � �
7. Compute the minor of each of the following

elements:

a. a11 b. a23 c. a31 d. a33

8. Compute the minor of each of the following
elements:

a. a12 b. a22 c. a23 d. a32

9. Compute the cofactor of each of the follow-
ing  elements:

a. a11 b. a23 c. a31 d. a33

10. Compute the cofactor of each of the follow-
ing  elements:

a. a12 b. a22 c. a23 d. a32

In Exercises 11–20, evaluate the determinant of
the given matrix.

11. � � 12. � �

13.� � 14. � �

15. � �
16. � �
17. � �
18. � �

4 –2 5
5 2 0
2 0 4

4 1 2
0 2 3
0 0 –4

3 4
–1 2

2 –3
4 5

2 2
3 3

–4 1
0 2

–4 –1
–2 3

0 0
1 3

3 –1 2
4 1 –3
5 –2 –0

–1 2 0
3 4 1
6 5 2

–1 3 2
0 7 7
2 1 3

0 –1 0 3
0 1 2 1
2 –2 2 3
3 3 1 0

0 0 2 3
–1 1 –2 3
0 2 2 1
3 1 3 0

2 1 –3 1
2 0 3 –5
1 –1 2 2
0 –1 1 3

2 2 1 0
1 0 –1 –1

–3 3 2 1
1 –5 2 3



19. � �

20. � �

21. Finding the determinants by using your
graphing calculator’s MATRIX menu, inves-
tigate what happens to the determinant of
the matrix in Exercise 17 if you change the
matrix in the following ways:

a. Interchange row 2 and row 3.

b. Interchange row 2 and row 3, then the
new row 3 and row 4.

What can you conclude from these results?

0 0 2 4
0 1 2 1
5 1 3 3
3 3 1 0

3 2 0 –1
–2 3 1 0
–2 –2 4 4
1 –5 2 3
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In general, the computations required to evaluate the determinant of a matrix can

get rather time-consuming as the dimension of the matrix becomes quite large.

Therefore, it may be worthwhile to consider alternative methods that may reduce

the number of operations involved. We have already observed that if an element

of a matrix equals zero, then we need not evaluate the corresponding cofactor

since the product of the two is also zero. Thus, we will examine methods to enable

us to obtain more zero entries in a matrix whose determinant is equal to that of

the original matrix under consideration.

In Section 8.1, we presented the elementary row operations:

1. Interchange any two rows.

2. Multiply each element of any row by a constant k ≠ 0.

3. Replace each element of a given row by the sum of itself plus k times the
corre spond ing element of any other row.

We have observed that these operations are important in transforming one

matrix into another matrix. We wish to explore what effect these operations

have on the determinant of the original matrix compared with the determinant

of the transformed matrix. We also wish to examine the determinant of some

special matrices:

1. a matrix with a row of zeros

2. a matrix where two rows are identical

3. a matrix where the rows and columns are interchanged, called the trans-
pose of the original matrix

8.5  Properties of Determinants
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Let

A � � �
Expanding about the cofactors of the first row, we find that

⏐A⏐ � �52

Interchanging rows 1 and 2 of A, we have

� � � 52

Multiplying the second row of A by �
1
2

�, we obtain

� � � �26

Adding 2 times row 1 to row 3, we find that

� � � �52

If we replace the second row of A with 0 elements, we have

� � � 0

If we replace row 3 of A with row 2, we obtain

� � � 0

Taking the transpose of A, where we interchange the rows and columns of A,

or equivalently, replacing aij with aji we find that

� � � �52

(Verify the calculations of the previous determinants, expanding by any row or

any column.) These examples suggest the properties of determinants shown in

Table 2.

Note that the determinant of a matrix expanded by cofactors yields the

same answer, whether the expansion uses a particular row or a particular col-

umn. This fact allows us to replace the word “row” by the word “column” and

obtain the same property. If a row or column has all zero entries, then expan-

sion by cofactors about this zero row or column produces a determinant of 0.

5 0 –1
4 – 6 0

–2 1 2

4 – 6 0
5 0 –1

–2 1 2

5 0 –1
2 –3 0

–2 1 2

5 0 –1
4 – 6 0
8 1 0

5 0 –1
0 0 0

–2 1 2

5 0 –1
4 – 6 0
4 – 6 0

5 4 –2
0 – 6 1

–1 0 2



If two rows or two columns are identical, then we may add �1 times one to the

other to produce a row or column of zeros, respectively.

TABLE 2  Properties of Determinants

1. Interchange any two rows of A or interchange any two columns of A, and call
the new matrix B. Then

⏐B⏐ � �⏐A⏐

2. Multiply each element of any row of A or any column of A by a constant k,
and call the new matrix B. Then

⏐B⏐ � k⏐A⏐

3. Add k times one row to any other row or k times one column to any other col-
umn and call the new matrix B. Then

⏐B⏐ � ⏐A⏐

4. If A has a row or column with 0 elements or if A has two identical rows or two
identical columns then

⏐A⏐ � 0

5. Take the transpose of A, where we replace aij with aji, so that the rows become
columns and the columns become rows. If we call the new matrix B, then

⏐B⏐ � ⏐A⏐

EXAMPLE 1  USING PROPERTIES OF DETERMINANTS
Evaluate the determinant.

� �
SOLUTION
To make a21 � 0, replace row 2 by the sum of

itself and (�4) times row 3. To make a41 � 0,

replace row 4 by the sum of itself and row 3.

Now expand the determinant by the cofactors of

the first column, obtaining

0
15
0

�6

3
8
2

�3

2
1

�1
�2

0
4
1

�1
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� �
2 3 0
5 0 15

–3 –1 –6

� �
0 2 3 0
0 5 0 15
1 –1 2 0
0 –3 –1 –6



We factor out 5 from the second row to obtain

To make a23 � 0, replace column 3 by the sum

of itself and (�3) times column 1.

Expand this determinant by the cofactors of the

second row, obtaining

Evaluating this last 2 × 2 determinant, we have �5(9 � 6) � �15

4 Progress Check
Evaluate the determinant.

4 0 0 3
2 4 5 8��2 1 0 2�

�4 �1 �2 �3

Answer
�10
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5� �
2 3 0
1 0 3

–3 –1 – 6

5� �2 3 – 6
1 0 0

–3 –1 3

–5� �3 –6
–1 3

Exercise Set 8.5
In Exercises 1–6, evaluate the determinant of the
given matrix.

1. � �2. � �

3. � �
4. � �

5. � �6.� �
7. Show that

� � � � � � � �
8. Prove that if a row or column of a square

matrix consists entirely of zeros, the determi-
nant of the matrix is zero. (Hint: Expand by
cofactors.)

9. Prove that if matrix B is obtained by multi-
plying each element of a row of a square
matrix A by a constant k, then ⏐B⏐ � k⏐A⏐.

2 2 4
3 8 1
1 1 2

0 1 3
2 5 –1
4 2 –2

3 2 1 0
–1 –3 –1 0
0 0 2 2
4 1 3 3

–1 2 4 0
3 –2 –3 0
0 4 2 5
0 –3 1 4

2 –3 2 –4
0 4 –1 9
0 1 2 0
0 1 3 –1

1 1 0 1
0 –1 4 –1

–2 3 1 –4
0 2 0 2

b2

d
b1

c
a2

d
a1

c
a1 + b1 a2 + b2

c d



10. Show that

� � � � � � k� �
11. Prove that if A is an n × n matrix and B � kA,

where k is a constant, then ⏐B⏐ � kn⏐A⏐.

12. Prove that if matrix B is obtained from a
square matrix A by interchanging the rows
and columns of A, then ⏐B⏐ � ⏐A⏐.

a12

a22

a11

a21

a12

ka22

a11

ka21

ka12

a22

ka11

a21
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Determinants provide a convenient way of expressing formulas in many areas

of mathematics, particularly in geometry. One of the better known uses of

determinants is for solving systems of linear equations, a procedure known as

Cramer’s Rule.

In an earlier section, we solved systems of linear equations by the method

of elimination. We now apply this method to the general system of two equa-

tions in two unknowns.

a11x � a12y � b1 (1)

a21x � a22y � b2 (2)

Let us multiply Equation (1) by a22, Equation (2) by �a12 and add. This elimi-

nates y.

a11a22x � a12a22y � b1a22

�a21a12x � a12a22y � �b2a12

a11a22x � a21a12x � b1a22 � b2a12

Thus,

x(a11a22 � a21a12) � b1a22 � b2a12

or

x � �
a
b

1

1

1

a
a

2

2

2

2

�

�

b
a2

2

1

a
a
1

1

2

2
�

Similarly, multiplying Equation (1) by a21, Equation (2) by �a11 and adding, we

can eliminate x and solve for y.

y � �
a
b

1

2

1

a
a

1

2

1

2

�

�

b
a2

1

1

a
a
2

1

1

2
�

8.6  Cramer’s Rule



The denominators in the expression for x and y are identical and can be writ-

ten as the determinant of the matrix

⏐A⏐ � � �
If we apply this same idea to the numerators, we have

x � � �,  y � � �,  ⏐A⏐ ≠ 0
x � ��b2

⏐A⏐
a22� ,  y � ��a2

⏐
1

A⏐
b2��,  ⏐A⏐ ≠ 0

This formula is called Cramer’s Rule and is a means of expressing the solution

of a system of linear equations in determinant form. Let A1 denote the matrix

obtained by replacing the first column of A with the column of the right-hand

sides of the equations. Furthermore, let A2 denote the matrix obtained by

replacing the second column of A again with the column of the right-hand sides.

We may summarize Cramer’s Rule as follows:

The following example outlines the steps for using Cramer’s Rule.

EXAMPLE 1  CRAMER’S RULE
Solve by Cramer’s Rule.

3x � 0y � �9

0x � 2y � �4

b1

b2

a11

a21

a12

a22

b1

b2

Cramer’s Rule for Two Unknowns
The solution to

a11x � a12y � b1

a21x � a22y � b2

is given by

x � �
⏐
⏐
A
A

1

⏐
⏐

� ,   y � �
⏐
⏐
A
A

2

⏐
⏐

� ,   ⏐A⏐ ≠ 0

a12

a22

a11

a21
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SOLUTION

The steps outlined in Example 1 can be applied to solve any system of lin-

ear equations in which the number of equations is the same as the number of

unknowns and in which ⏐A⏐ ≠ 0. For example, assume A is 3 × 3. If A3 is the

matrix obtained by replacing the third column of A with the column of right-

hand sides, then we have

4 Progress Check
Solve by Cramer’s Rule.

2x � 3y � �4

3x � 4y � �7

Answers
x � �5, y � 2

Step 1. Compute ⏐A⏐, the determinant of the coef-

ficient matrix A. If A � 0, Cramer’s Rule

cannot be used. Use Gaussian Elimination

or Gauss-Jordan  Elimination.

Step 2. Compute ⏐A1⏐, the determinant of the

matrix obtained from A by replacing the

column of co efficients of x, the first column

unknown, with the column of right-hand

sides of the equations.

x � �
⏐
⏐
A
A

1

⏐
⏐

�

Step 3. Compute ⏐A2⏐, the determinant of the

matrix obtained from A by replacing the

column of co efficients of y, the second col-

umn unknown, with the column of right-

hand sides of the equations.

y � �
⏐
⏐
A
A

2

⏐
⏐

�

Step 1.

⏐A⏐ � � � � 7

Step 2.

x � �
⏐
⏐
A
A

1

⏐
⏐

� �

� �
18

7
� 4
� � �

1
7
4
� � 2

Step 3.

y � �
⏐
⏐
A
A

2

⏐
⏐

� �

� �
�12

7
� 9
� � �

�

7
21
� � �3

Thus, x � 2, y � �3.

� 3        9
1     �4

�
⎢A⎢

� 9   �1
�4      2

�
⎢A⎢

–1
2

3
1

Cramer’s Rule
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EXAMPLE 2  CRAMER’S RULE
Solve by Cramer’s Rule.

3x � 2z � �2

2x � y � 0

2y � 6z � �1

SOLUTION
We compute the determinant of the matrix of coefficients.

⏐A⏐ � � � � �10

Then

x � �
⏐
⏐
A
A

1

⏐
⏐

� � � �
�

1
1
0
0

� � �1

y � �
⏐
⏐
A
A

2

⏐
⏐

� � � ��
�

2
1
0
0

� � �2

z � �
⏐
⏐
A
A

3

⏐
⏐

� � � �
�

�

1
5
0

� � �
1
2

�

Cramer’s Rule for Three Unknowns
The solution to

a11x � a12y � a13z � b1

a21x � a22y � a23z � b2

a31x � a32y � a33z � b3

is given by

x � �
⏐
⏐
A
A

1

⏐
⏐

� ,   y � �
⏐
⏐
A
A

2

⏐
⏐

� ,   z � �
⏐
⏐
A
A

3

⏐
⏐

� ,   ⏐A⏐ ≠ 0

2
0
6

0
�1

2

3
2
0

� �–2 0 2
0 –1 0

–1 2 6

⏐A⏐

� �3 –2 2
2 0 0
0 –1 6

⏐A⏐

� �
3 0 –2
2 –1 0
0 –2 –1

⏐A⏐
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WARNING

a. Each equation of the linear system must be written in the form

ax � by � cz � k

before using Cramer’s Rule.

b. If ⏐A⏐ � 0, Cramer’s Rule cannot be used.

4 Progress Check
Solve by Cramer’s Rule.

3x � z � 1

�6x �2y � �5

�4y � 3z � 5

Answers

x � �
2
3

�, y � ��
1
2

�, z � 1

Exercise Set 8.6
In Exercises 1–8, solve the given linear system by
using Cramer’s Rule.

1. 2x � y � z � �1
2x � y � 2z � 2

x � 2y � z � �4

2. x � y � z � �5
3x � y � 2z � �5
2x � y � z � �2

3. 2x � y � z � 9
x � 2y � 2z � �3

3x � 3y � 4z � 11

4. 2x � y � z � �2
�2x � 2y � 3z � 2

3x � y � z � �4

5. �x � y � 2z � 7
x � 2y � 2z � �7

2x � y � z � �4

6. 4x � y � z � �1
x � y � 2z � 3

�x � 2y � z � 0

7. x � y � z � 2w �   0
2x � y � w � �2
3x � 2z � �3
�x � 2y � 3w � 1

8. 2x � y � 3w � �7
3x � 2z � w � �1

�x � 2y � 3w � 0
�2x � 3y � 2z � w � 8



Terms and Symbols

Chapter Summary

Key Ideas for Review

9. Mathematics in Writing: Give a step-by-step
method for solving systems of equations by
Cramer’s Rule with your graphing calculator.

10. Redo Exercises 7 and 8 using the method
you outlined in Exercise 9.
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A�1 523
⏐A⏐ 531
[aij] 500
additive inverse 519
augmented matrix 501
coefficient matrix 501
cofactor 532
column matrix 500
Cramer’s Rule for three 545

unknowns
Cramer’s Rule for two

unknowns 543
determinant 531

dimension 499
elementary row operations 502
elements of a matrix 499
entries of a matrix 499
equality of matrices 510
expansion by cofactors 533
Gaussian Elimination 503
Gauss-Jordan Elimination 506
identity matrix 519
inverse 520
invertible matrix 520
matrix 499
matrix addition 511

matrix multiplication 513
matrix subtraction 513
minor 532
nonsingular matrix 520
order 499
pivot element 503
pivot row 503
row matrix 500
scalar 512
scalar multiplication 512
square matrix of order n 499
transpose of a matrix 538
zero matrix 518

Topic Page Key Idea

Matrices 499 A matrix is a rectangular array of numbers.

Addition and Subtraction 511 The sum and difference of two matrices A and B can be formed
only if A and B are of the same dimension.

Multiplication 514 The product AB can be formed only if the number of columns of A
is the same as the number of rows of B.

Systems of Linear Equations and 516 A linear system can be written in the form AX � B, where A is
the coefficient

Matrix Notation matrix, X is a column matrix of the unknowns and B is the column
matrix of the right-hand sides. The elementary row operations are
an abstraction of those operations that produce equivalent systems
of equations.

Gaussian and Gauss-Jordan 506 Gaussian Elimination and Gauss-Jordan Elimination both involve
the use of

n n n



Key Ideas for Review
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Topic Page Key Idea

Elimination elementary row operations on the augmented matrix corresponding
to a linear system. In the case of a system of three equations with
three unknowns and a unique solution, the final matrices are of this
form:

� � � �
Gaussian Elimination      Gauss-Jordan Elimination

If Gaussian Elimination is used, back-substitution is then performed
with the final matrix to obtain the solution. If Gauss-Jordan
Elimination is used, the solution can be read from the final matrix.

Inverse of a Matrix 519 The n × n matrix B is said to be the inverse of the n × n matrix A if
AB � In and BA � In. We denote the inverse of A by A�1. The
inverse can be computed by using elementary row operations to
transform the matrix [A�In] to the form [In�B], in which case [B
� A�1].

Solving Linear Systems 525 If the linear system AX � B has a unique solution, then X � A�1B.

Determinants 531 Associated with every square matrix is a number called a determi-
nant. The determinant of the 1 × 1 matrix A � [a] is ⏐A⏐ � a. The
rule for evaluating a determinant of order 2 is

� � � ad � bc

Evaluation by Cofactors 532 For determinants of order greater than 2, the method of expansion
by cofactors may be used to reduce the problem to that of evaluat-
ing determinants of order 2. When expanding by cofactors, choos-
ing the row or column that contains the most zeros usually simpli-
fies the arithmetic.

Properties 538 Some useful properties of determinants follow:

1. Interchange any two rows of A or interchange any two columns
of A, and call the new matrix B. Then

⏐B⏐ � �⏐A⏐

2. Multiply each element of any row of A or any column of A by a
constant k, and call the new matrix B. Then

⏐B⏐ � k⏐A⏐

3. Add k times one row to any other row or k times one column to
any other column and call the new matrix B. Then

⏐B⏐ � ⏐A⏐

1 0 0 � c1

0 1 0 � c2

0 0 1 � c3

* * * � *
0 * * � *
0 0 * � *

b
d

a
c



Topic Page Key Idea

4. If A has a row or column with 0 elements or if A has two identi-
cal rows or two identical columns then

⏐A⏐ � 0

5. Take the transpose of A, where we replace aij with aji, so that the
rows become columns and the columns become rows. If we call
the new matrix B, then

⏐B⏐ � ⏐A⏐

Cramer’s Rule 543 Cramer’s Rule provides a means for solving a linear system by
expressing the value of each unknown as a quotient of determinants.
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Review Exercises

Solutions to exercises whose numbers are in bold
are in the Solutions section in the back of the
book.

Exercises 1–4 refer to the matrix

A � � �
1. Determine the dimension of the matrix A.

2. Find a24.

3. Find a31.

4. Find a15.

Exercises 5 and 6 refer to the linear system.

3x � 7y � 14

0x � 4y � 06

5. Write the coefficient matrix of the linear sys-
tem.

6. Write the augmented matrix of the linear
system.

In Exercises 7 and 8, write a linear system corre-
sponding to the augmented matrix.

7. � �

8. � �
In Exercises 9–12, use back-substitution to solve
the linear system corresponding to the given aug-
mented matrix.

9. � �

10.� �

11. � �

12. � �
4 –1 � 3
2 5 � 0

–2 4 5 � 0
6 –9 4 � 0
3 2 –1 � 0

1 –2 � 7
0 1 � –4

1 2 � 21/2
0 1 � 5

1 – 4 2 �–18
0 1 –2 � 5
0 0 1 � –1

1 –2 2 � –9
0 1 3 � –8
0 0 1 � –3

–1 4 2 0 8
2 0 –3 –1 5
4 – 6 9 1 –2



Review Exercises

In Exercises 13–16, use matrix methods to solve
the given linear system.

13. x � y � 2
2x � 4y � �5

14. 3x � y � �17
2x � 3y � �4

15. x � 3y � 2z � 0
�2x � 3z � �12

2x � 6y � z � 6

16. 2x � y � 2z � 3
�2x � 3y � z � 3

2y � z � 6

In Exercises 17 and 18, solve for x.

17. � � � � �

18. � � � � �
Exercises 19–28 refer to the following matrices:

A � � � B � � �

C � � � D � � �
If possible, find the following:

19. A � B 20. B � A

21. A � C 22. 5D

23. CD 24. DC

25. BC 26. CB

27. A � 2B 28. �AB

In Exercises 29 and 30, find the inverse of the
given matrix.

29. � � 30. � �
In Exercises 31 and 32, solve the given system by

finding the inverse of the coefficient matrix.

31. 2x � y � 1 32. x � 2y � 2z � �4
x � y � 5 3x � y � �2

y � 4z � �1

In Exercises 33–38, evaluate the determinant of
the given matrix.

33. � � 34. � �

35. � � 36. � �

37. � � 38. � �
In Exercises 39–44, use Cramer’s Rule to solve
the given linear system.

39. 2x � y � �3 40. 3x � y � 7
�2x � 3y � 11 2x � 5y � �18

41. x � 2y � 2 42. �2x � 3y � z � �3
2x � 7y � 48 �3x � 4z � 16

2y � 5z � 9

43. 3x � z � 0 44. 2x � 3y � z � �5
x � y � z � 0 2y � 2z � �3

� 3y � 2z � �4 4x � y � 2z � �2

5 –1
3 – 6

5 –1
3 2x

6 9
–12 –2

6 x2

4x –2

–1 5
4 –3

2 –1
3 2

1 3 4
–1 0 – 6

–1 0
0 4
2 –2

1 1 –4
–5 –2 0
4 2 –1

–2 3
1 4

–1 2
0 6

3 1
–4 2

1 0 –1
2 3 –5
0 4 0

2 –1
6 –3

1 –1 2
0 5 4
2 3 8

1 2 –1
0 3 4
0 0 –1
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Review Test

Exercises 1 and 2 refer to the matrix

A � � �
1. Find the dimension of the matrix A.

2. Find a31.

3. Write the augmented matrix of the linear
system

�7x � 6z � 3

2y � z � 10

x � y � z � 5

4. Write a linear system corresponding to the
augmented matrix

� �
5. Use back-substitution to solve the linear sys-

tem corresponding to the augmented matrix

� �
6. Solve the linear system

�x � 2y � 2
�
1
2

�x � 2y � �7

by applying Gaussian Elimination to the
augmented matrix.

7. Solve the linear system

2x � y � 3z � 2

x � 2y � z � 1

�x � y � 4z � 2

by applying Gauss-Jordan Elimination to the
augmented matrix.

8. Solve for x.

� � � � �
Exercises 9–12 refer to the matrices

A � � � B � � �

C � � � D � � �
If possible, find the following:

9. C � 2D 10. AC

11. CB 12. BA

13. Find the inverse of the matrix

� �
14. Solve the given linear system by finding the

inverse of the coefficient matrix.

3x � 2y � �8

2x � 3y � �1

In Exercises 15 and 16, evaluate the determinant
of the given matrix.

15. � � 16. � �
17. Use Cramer’s Rule to solve the linear system

x � 2y � �2

�2x � 3y � 1

–1 2
–2 4
0 7

–5 2 � 4
3 – 4 � 4

1 1 � 0
0 1 � 1/2

5 0
1 –3

2x – 1 0
1 –3

–1
–3

– 4 0 3
6 2 –3

1 –6
0 2
4 –1

4 2
–2 0
3 –1

–1 0 4
2 1 –1
1 –3 2

0 –1 2
2 –2 3
1 4 5

– 6 –2
2 1
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Writing Exercises

1. Discuss how to solve a linear system in three
unknowns if Cramer’s Rule fails to hold.

2. Compare and contrast the additive proper-
ties of matrices with the additive properties
of the real numbers.

3. Compare and contrast the multiplicative
properties of square matrices with the multi-
plicative properties of the real numbers.

4. Compare and contrast Gauss-Jordan
Elimination and Gaussian Elimination.
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Chapter 8 Project
Manipulating images using computer technology is a major component of special effects in some of

today’s most popular films. The mathematics of matrices can help us see how images can be altered by

increasing the contrast or adding two images together. One interesting use of the latter technique is a

process called blue-screen chromakey, by which a character may appear to be in an environment which

was actually photographed separately.

For this project, do the following exercises from this chapter: Section 8.1, 51, and Section 8.2,

37–39.
Now make up your own image matrix. Make it 20 pixels by 15 pixels, and let each pixel have

6 bits (this means each entry will be an integer between 0 and 63). Repeat the exercises using this
matrix. Use your calculator to help you. If increasing the contrast results in an entry greater than
63, what should you do?

n n n




