Matrices, Linear Systems,
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Matrices and Linear Systems

8.2 Matrix Operations and Applications
Inverses of Matrices
Determinants
Properties of Determinants

Cramer’s Rule

Have you recently sent or received a picture of a friend by email or cell phone? Or perhaps
you plan on watching a DVD with friends tonight. The pictures you will see are digital

images, which are made up of pixels. For a black-and-white image, each pixel has a value
representing the gray-level intensity. If we replace each pixel in the image with its value, a
number, we get a rectangular array that looks like this:
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This array is called a matrix. By multiplying each entry by 3, we would
increase the contrast. Other matrix operations (Section 8.2) can be applied to

NS N
- O O\

alter the image in other ways. The chapter project explores some possibilities.

Explore some mathematical topics, including this one, in the Journal of
Online Mathematics at http://www.joma.org/, which is part of the
Mathematical Association of America’s Mathematical Sciences Digital Library.

The material on matrices and determinants presented in this chapter
serves as an introduction to linear algebra, a mathematical subject that is
used in the natural sciences, business and economics, and the social sci-
ences. Since methods involving matrices may require millions of numerical
computations, computers have played an important role in expanding the
use of matrix techniques to a wide variety of practical problems.

Our study of matrices and determinants will focus on their application to
the solution of systems of linear equations. We will see that the method of
Gaussian Elimination, studied in the previous chapter, can be readily imple-
mented using matrices. We will show that matrix notation provides a conven-
ient means for writing linear systems and that the inverse of a matrix enables
us to solve such a system. Determinants will also provide us with an additional
technique, known as Cramer’s Rule, for the solution of certain linear systems.

It should be emphasized that this material is a very brief introduction to
matrices and determinants. Their properties and applications are both
extensive and important.
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Calculator Alert

Many calculators have matrix capabilities. When you understand the basic con-

cepts of matrix computations and applications, you will find that this capabili-
ty is a useful tool for problem solving. Your owner’s manual has instructions

for performing matrix operations. See Example 7 in this Section.

8.1 Matrices and Linear Systems

Definitions

We have already studied several methods for solving a linear system, such as
2x + 3y = -7
3x — y= 17

This system can be displayed by a matrix, which is a rectangular array of 7 real

numbers arranged in 72 horizontal rows and # vertical columns. The numbers are

called the entries, or elements, of the matrix and are enclosed within brackets.

Thus,
2 3 —7]
- rOWS
A [3 -1 171°
columns

is a matrix consisting of two rows and three columns, whose entries are
obtained from the two given equations. In general, a matrix of » rows and »
columns is said to be of dimension m by #n, written 72 X n. The matrix A is seen
to be of dimension 2 x 3. If the numbers of rows and columns of a matrix are
both equal to #, the matrix is called a square matrix of order #.

EXAMPLE 1 DIMENSION OF A MATRIX
-1 4 ]
1 -2

is a 2 X 2 matrix. Since matrix A has two rows and two columns, it is a

a. A:[

square matrix of order 2.
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has three rows and two columns and is a 3 x 2 matrix.
c. C=[-8 6 1]
is a 1 x 3 matrix and is called a row matrix since it has precisely one row.

d- o[

is a 2 X 1 matrix and is called a column matrix since it has exactly one
column.

Subscript Notation

There is a convenient way of denoting a general 72 X 7 matrix, using “double sub-

scripts.”
ay ap cccoag e ay, | < first row
ay  dy vt ayccr 4y, | < second row
A= ‘
aj ap aj c a, « ith row
At Gt Ayjtt Ay, | < mth row

I )
first second  jth nth
column column column column

Thus, a;; is the entry in the ith row and jth column of the matrix A. It is cus-
tomary to write A = [a;] to indicate that a; is the entry in row 7 and column j
of matrix A.

EXAMPLE 2 MATRIX DIMENSION AND ELEMENT NOTATION
Let

Matrix A is of dimension 3 x 4. The element a,, is found in the first row and sec-
ond column and is seen to be —2. Similarly, we see that a;; = —3, a;; = —4 and

azy = 8.
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v Progress Check
Let
4 8 1
2 -5 3
B=1-8 6 -4
0 1 —1

Find the following:
a. bll b. b23 C. b31 d. b42

Answers
a. 4 b. 3 c. —8 d. 1

Coefficient and Augmented Matrices

If we begin with the system of linear equations

2x + 3y = =7
3x— y= 17

5

in which the first column is formed from the coefficients of x and the second

the matrix

column is formed from the coefficients of y, is called the coefficient matrix. The

2 3 i -7
I

which includes the column consisting of the right-hand sides of the equations sep-

matrix

arated by a dashed line, is called the augmented matrix. Note that the unknowns

should always be aligned when forming the coefficient and augmented matrices.

EXAMPLE 3 LINEAR SYSTEMS AND THE AUGMENTED MATRIX

Write a system of linear equations that corresponds to the augmented matrix.

5 2 -1 i 15
0 2 1 i -7
1 .

2
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SOLUTION
We attach the unknown x to the first column, the unknown y to the second col-
umn, and the unknown z to the third column. The resulting system is

—Sx+2y—2=1S§
—2y+z=-7
%x—l— y—z= 3

Now that we have seen how a matrix can be used to represent a system of
linear equations, we next proceed to show how operations on that matrix can
yield the solution of the system. These “matrix methods” are simply a stream-
lining of the methods already studied in the previous chapter.

In Section 7.3, we used three elementary operations to transform a system
of linear equations into triangular form. When applying the same procedures to
a matrix, we speak of rows, columns, and elements instead of equations,
unknowns, and coefficients. The three elementary operations that yield an

equivalent system now become the elementary row operations.

The method of Gaussian Elimination, introduced in Section 7.3, can now
be restated in terms of matrices. By use of elementary row operations we seek
to transform an augmented matrix into a matrix for which a; = 0 when i > ;.
The resulting matrix has the following appearance for a system of three linear

equations in three unknowns:

0 * * *
0 0 * *

Since this matrix represents a linear system in triangular form, back-substitution
provides a solution of the original system. We will illustrate the process with an

example.



Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Chapter 8 = Matrices, Linear Systems, and Determinants m

EXAMPLE 4 ELEMENTARY ROW OPERATIONS AND GAUSSIAN

ELIMINATION

Solve the system.

SOLUTION

x —

yt+4z= 4

x+2y— z= 2

3x —2y+3z=-3

We describe and illustrate the steps of the procedure.

Gaussian Elimination

Form the augmented matrix.

If necessary, interchange rows to make sure
that a4, the first element of the first row, is
nonzero. We call a,; the pivot element and
row 1 the pivot row.

Arrange to have 0 as the first element of
every row below row 1. This is done by
replacing row 2, row 3, and so on by the
sum of itself and an appropriate multiple of

row 1.

Repeat the process defined by Steps 2 and 3,
allowing row 2, row 3, and so on to play the
role of the first row. Thus, row 2, row 3,
and so on serve as the pivot rows, with a,,
the pivot element of row 2, a3, the pivot ele-
ment of row 3, and so on.

The corresponding linear system is in trian-
gular form. Solve by back-substitution.

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

The augmented matrix is

1 -1 4 | 4
2 2 -1 2
3 2 3 -3

We see that a;; = 1 # 0. The pivot element

is a;; and is shown in bold.

To make a,; = 0, replace row 2 by the sum
of itself and (—2) times row 1. To make a5,
= 0, replace row 3 by the sum of itself and
(—3) times row 1.

1 -1 4 | 4
0 4 -9 -6
0 1 -9 -15

Since a,, = 4 # 0, it serves as the next pivot
element and is shown in bold. To make a3,
= 0, replace row 3 by the sum of itself and
(—%) times row 2.

1 -1 4 4
0o 4 -9 P -6
0 0 -, -7/,
The third row of the final matrix yields
_27, - 27
4 2

z=2



m Chapter 8 = Matrices, Linear Systems, and Determinants

Substituting z = 2, we obtain from the sec-
ond row of the final matrix

4y — 9z = -6
4y —9(2) = -6
y=3

Substituting y = 3 and z = 2, we obtain
from the first row of the final matrix

x—y+4z=4
x—3+42) =4

x=—1

The solutionis x = =1,y = 3,z = 2.

v Progress Check

Solve the linear system by matrix methods.
2x+4y— z= 0

x—2y—2z= 2

—Sx —8y+3z=-2

Answers
x=6,y=-2,2=4

Note that we described the process of Gaussian Elimination in a manner
that applies to any augmented matrix that is # x (z + 1). Thus, Gaussian
Elimination may be used on any system of n linear equations in # unknowns
that has a unique solution.

It is also permissible to perform elementary row operations in ways to sim-
plify the arithmetic. For example, you may wish to interchange rows or multiply
a row by a constant to obtain a pivot element equal to 1. We will illustrate these

ideas with an example.

EXAMPLE 5 ELEMENTARY ROW OPERATIONS AND GAUSSIAN
ELIMINATION

Solve by matrix methods.

I
N

2y + 3z
4+ y+ 82+ 15w =—-14
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9
10

x— y+2z

—x —2y—3z— 6w

We begin with the augmented matrix and perform a sequence of elementary row operations. The pivot ele-

ment is shown in bold.

Write the augmented matrix. Note that a;; = 0.

Interchange rows 1 and 3 so that a;; = 1.

To make a,; = 0, replace row 2 by the sum of
itself and (—4) times row 1. To make a,; = 0,
replace row 4 by the sum of itself and row 1.

1
Multiply row 2 by 5" so that ay, = 1.

To make a3, = 0, replace row 3 by the sum of itself and (—2) times
row 2. To make a4, = 0, replace row 4 by the sum of itself and 3

times row 2.

Interchange rows 3 and 4 so that the next pivot is a3; = —1.

To make ay; = 0, replace row 4 by the sum of itself and 3 times
row 3.

|
[REGEEN

S O O = S O O = S O O = S O O = —_ O A= + O

S O O =

o o W

|
w

0
15
0
-6

W W w O
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The last row of the matrix indicates that

3w =-9

w=-—3

The remaining unknowns are found by back-substitution.

Third Row of Second Row of First Row of
Final Matrix Final Matrix Final Matrix
—z+ 3w=—11 y+3w=-10 x—y+2z=9
—z+3(=3)=-11 y+3(-3)=-10 x—(-1)+22)=9
z=2 y=-1 x =4
The solutionisx =4,y = -1,z = 2, w = —3.

Gauss-Jordan Elimination

There is an important variant of Gaussian Elimination known as Gauss-Jordan
Elimination. The objective of this variant is to transform a linear system into a
form that yields a solution without back-substitution. For a 3 x 3 system that
has a unique solution, the final matrix and equivalent linear system look like
this:

1.0 0 o x + 0y + 0z = ¢
0 0 1 ¢ Ox + 0y + z2=c;

The solution is then seen to be x = ¢;, y = ¢; and z = ¢;.
The execution of the Gauss-Jordan Method is essentially the same as that of

Gaussian Elimination with these exceptions:
1. The pivot elements are always required to be equal to 1.
2. All elements in a column other than the pivot element are forced to be 0.

These objectives are accomplished by the use of elementary row operations as

illustrated in the following example.

EXAMPLE 6 GAUSS-JORDAN ELIMINATION
Solve the linear system by the Gauss-Jordan Method.

x— 3y +2z = 12

2x + y—4z= -1

x+3y—2z=-8
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SOLUTION
We begin with the augmented matrix. At each stage, the pivot element is shown
in bold and is used to force all elements in that column other than the pivot ele-

ment itself to be zero.

The pivot element is ay;. 1 -3 2 i 12
1 4 i -
1 3 =2 i -8
To make a,; = 0, replace row 2 by the sum of ~
itself and —2 times row 1. To make a;; = 0, L= 2 12
replace row 3 by the sum of itself and —1 0 7 -8 -25
i 0 6 4 =20
times row 1. | |
Replace row 2 by the sum of itself and —1 1 =3 2 12
i . : _ 0 1 -4 _s
times row 3 to yield the next pivot, a,, = 1.
0 4 20
To make a,, = 0, replace row 1 by the sumof [ 1 0 -10 L3
itself and 3 times row 2. To make a5, = 0, 0 1 -4 =5

replace row 3 by the sum of itself and —6 0 0 20 | 10
times row 2.

. 1 0 -10 , -3 7]
Multiply row 3 by 55 so that a;; = 1. 0 1 -4 | -5
0o 0 1 1/,
To make a,3 = 0, replace row 1 by the sumof [ 1 0 0 | 2 ]
itself and 10 times row 3. To make a,; = 0, 0 1 0 P -3
replace row 2 by the sum of itself and 4 times 0 0 1 1,
row 3. = =
We see the solution directly from the final matrix: x = 2,y = =3, and z = %
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Graphing Calculator Power User’s Corner

Reduced Row Echelon Form

@ Your graphing calculator can take an augmented matrix and return the reduced
row echelon form required by Gauss-Jordan Elimination. As you will see in
Example 7, the dashed line customarily found in an augmented matrix does not
appear. Your graphing calculator is a powerful tool for solving systems of equa-
tions. However, you must be able to interpret the information it gives you. Recall

the cases in which there are either infinitely many solutions, or no solution.

EXAMPLE 7 GAUSS-JORDAN ELIMINATION
USING THE GRAPHING CALCULATOR

Consider the system
0.03x + y — 0.07z = 0.89
x —0.01y + 0.12z = 1.23
1.02x — 1.02y + z=2

The augmented matrix for this system is

0.03 1 -0.07 0.89
1 -0.01 0.12 1.23
1.02  -1.02 1 2

After entering this matrix into the graphing calculator and naming it A, we
select reduced row echelon form from the MATRIX MATH menu:

.
NAMES EDIT
6: % randhM(

7i-audment |

8: Matr = fist|

9: List=matr(
07 cumSumi
A ref(

[ER rrai]
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Here is the result:

rref{[Al)
1001
0101
0012

The solution is (1, 1, 2).

Exercise Set 8.1

In Exercises 1-6, state the dimension of each In Exercises 13-16, write the linear system whose
matrix. augmented matrix is given.
-1 . |
1. [3 ] 2.1 2 3 -1 ol AR 414 012
24 4 51 3 -7 813
3. [ 4 2 3 4 [ -1 _ -
5 -1 4 3 1 1 31 -4
2 -3 4 01 8
2 36 150 2 0 7% 6
| -8 -1 - -
5T 5, 17 6 1ol 4 8 3412
3 [3 -1 2 6 1 -5 3i-14
[N 2 8 4 1l 0 2 718
| -4 -2 3] - -
_ - In Exercises 17-20, the augmented matrix corre-
7 Given 3 -4 =2 5 sponding to a linear system has been transformed
A= 8 7 6 2 to the given matrix by elementary row operations.
11 0 9 -3 Find a solution of the original linear system.
find 7.1 2 01 3
a. dqy b 2553 C. a3 d a3 O 1 —2 i 4
8. Given 56 g | 00 12
- * ! [ 10 2141
0 2 -6 01 3 !
find =39 7 18.1 0 0 1 5
a. b13 b bz] C. b33 d. b42 _
19. :
In Exercises 9-12, write the coefficient matrix -2 1 3
and the augmented matrix for each given linear 01 3 { 2
system. 00 1 | 4
9. 3x—2yi 12 10. ix—4yii§ 20. —1_4 ) _4_
Sx+ y=-8 x — 3y = 01 3 | =2
11 3x+ y+ z=4 12 2x+3y—4z= 10 0011 5
2x— y—4z=6 —3x+ y =12 - -

4x+2y—3z=38 Sx—=2y+ z=-8
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In Exercises 21-30, solve the given linear system 29. x+ y— z+2w= 0
by applying Gaussian Elimination to the aug- 2x + y - w=-2
mented matrix. 3x + 2z =-3
21, x—2y=-4 2. 2x+y=-—1 TxH2y Adw= 1
2x + 3y = 13 Ix—y=-7 30 2x+ vy —3w=-7
3x +2z+ w= 0

23, x+ y+ z= 4
2x — y+2z=11
x+2y+ 2z

—x + 2y + 3w = 10
—2x—3y+2z— w= 7

Il
)

In Exercises 31-40, solve the linear systems of

4. x—y+t z=-5 Exercises 21-30 by Gauss-Jordan Elimination

;x ty+2z= _g applied to the augmented matrix.
YT In Exercises 41-50, solve the linear systems of
25. 2x+ y— z= 9 Exercises 21-30 in your graphing calculator by
x—2y+2z=-3 using the reduced row echelon option under your
3x + 3y +4z= 11 MATRIX menu.
26. 2x+ y— z=-2 51. A black-and-white digital image has 30 rows
—2x —2y+3z= 2 of 18 pixels each. If the image is represented
3x+ y— z=-4 as a matrix with each entry the value of the
corresponding pixel, what are the dimen-
27. —x — y+2z= 9 sions of the matrix?
x+2y—2z=-7 . .
2e— y+ z=-9 52. Mathematics in Writing: In your own words,

describe the difference between Gaussian elim-
ination and Gauss-Jordan elimination. Which
do you prefer? Why?

28. 4x+ y— z=-1
x— yt+t2z= 3
—x+2y— 2

Il
o

8.2 Matrix Operations and Applications

Now that we have defined a matrix, we can define various operations with
matrices. First we begin with the definition of equality.

EXAMPLE 1 MATRIX EQUALITY

Solve for all unknowns.
2 2 9] [z 6 9
y-1 3 —4s |4 r 7
SOLUTION

Equating corresponding elements, we must have

2=z or z=-2
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2x x =3

Il
o)
=}
=2

y—1=—-4 o y=-3
3=r or r=3

—4s =7 or s=—Z

. . 4
Matrix addition can be performed only when the matrices are of the same
dimension.

EXAMPLE 2 MATRIX ADDITION

Given the following matrices,

A=1[2 -3 4] B=1[5 3 2]
1 6 4 e 2 9
C‘[—z 4 5} D‘[4 7 —1]
find (if possible):
a. A+B b. A+ D c. C+D

SOLUTION
a. Since A and B are both 1 x 3 matrices, they can be added, giving

A+B=[2+5 -3+4+3 4+4+2]1=[7 0 6]
b. Matrices A and D are not of the same dimension and cannot be added.

c. Cand D are both 2 x 3 matrices. Thus,

1416 6+2 149 ]_{17 8 8]

C+D=[ D44 44(7) S+ (1) 2 -3 4

A matrix is a way of writing the information displayed in a table. For exam-
ple, Table 1 displays the current inventory of the Quality TV Company at its var-
ious outlets.

TABLE 1 Inventory of Television Sets
TV Sets  Boston Miami Chicago

17 inch 140 84 25
19 inch 62 17 48
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The same data is displayed by the matrix S, where we understand the columns

to represent the cities and the rows to represent the sizes of the television sets.

g_[140 84 25]
Tl 62 17 48

If the matrix

30 46 15]
M_[so 25 60

specifies the number of sets of each size received at each outlet the following

month, then the matrix

170 130 40
T=S+M= [112 2 108}
gives the revised inventory.

Suppose the salespeople at each outlet are told that half of the revised inven-
tory is to be placed on sale. To determine the number of sets of each size to be
placed on sale, we need to multiply each element of the matrix T by 0.5. When
working with matrices, we call a real number such as 0.5 a scalar and define

scalar multiplication as follows:

EXAMPLE 3 SCALAR MULTIPLICATION
The matrix Q
Regular Unleaded Premium
~ 130 250 60 City A
Q=110 180 40| City B

shows the quantity (in thousands of gallons) of the principal types of gasolines
stored by a refiner at two different locations. It is decided to increase the quanti-
ty of each type of gasoline stored at each site by 10%. Use scalar multiplication

to determine the desired inventory levels.

SOLUTION

To increase each entry of matrix Q by 10%, we compute the scalar product

1.10.
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110 = 1.1 130 250 60] [ 1.1(130) 1.1(250) 1.1(60)
1Q=1. 110 180 40| | 1.1(110) 1.1(180) 1.1(40)

_[143 275 66
T 1121 198 44

We denote A + (—1)B by A — B and refer to this as the difference of A and B.

EXAMPLE 4 MATRIX SUBTRACTION
Using the matrices C and D of Example 2, find C — D.

SOLUTION
By definition,

1-16 6-2 -1-9 15 4 -10
C—D=| 5_-4 4-(7 5--1) || -6 11 6

Matrix Multiplication

We will use the Quality TV Company again, this time to help us arrive at a def-

inition of matrix multiplication. Suppose

Boston Miami Chicago
5|60 85 70] 17 inch
140 100 20 19 inch

is a matrix representing the number of television sets in stock at the end of the
year. Further, suppose the cost of each 17-inch set is $80 and the cost of each
19-inch set is $125. To find the total cost of the inventory at each outlet, we
multiply the number of 17-inch sets by $80, the number of 19-inch sets by
$125, and add the two products. If we let

A =[80 125]
be the cost matrix, we seek to define the product

60 85 70}

AB =80 125] [40 100 20



m Chapter 8 = Matrices, Linear Systems, and Determinants

so that the result is a matrix displaying the total inventory cost at each outlet.
We need to calculate for

the Boston outlet (80)(60) + (125)(40) = 9800
the Miami outlet ~ (80)(85) + (125)(100) = 19,300
the Chicago outlet  (80)(70) + (125)(20) = 8100
The total inventory cost at each outlet can then be displayed by the 1 x 3 matrix
C =1[9800 19,300 8100]
which is the product of A and B. Thus,

60 85 70
40 100 20

AB = [80 125] [
= [(80)(60) + (125)(40) (80)(85) + (125)(100) (80)(70) +(125)(20)]
=[9800 19,300 8100] = C

This example illustrates the process for multiplying a 1 X 2 matrix times a 2 X 3
matrix. The general definition of matrix multiplication utilizes the same basic
idea. That is, multiplication of matrices requires calculating sums of products. In
this example, the first matrix had two columns and the second matrix had two

rows. If we denote the elements of the first matrix as

A =la; ap)]

and the elements of the second matrix as

by byy 1713]
B =
|:b21 by, by

then matrix multiplication requires that we calculate
[a11b11 + @by anbin + annbyy  anbis + abysl
If we denote the elements of this product by

C=lcnn cn asl

then we see that
Cip = allblk + d12b2k fOI' k = 1, 2, 3
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It is important to note that the product AB only exists if the number of

columns of A equals the number of rows of B. See Figure 1.

mxn nxr
To form the matrix product AB,

these must be equal.

Dimension of the product AB

FIGURE1 Dimension of the Product Matrix

EXAMPLE 5 MATRIX MULTIPLICATION

Find the product AB if
A:[Z 1] 2[4—6 -2 4]
3 5 2 0 1 =5
SOLUTION
AB =
(2)(4) + (1)(2)  (2)(=6) + (1)(0) (2)(=2) + (1)(1)  (2)(4) + (1)(=5)
B4+ (5)2)  (3)(=6) + (5)(0) (3)(=2) + (5)(1)  (3)(4) + (5)(=5)

10 -12 -3 3
=122 -18 -1 -13

v’ Progress Check
Find the product AB if
5 -4
A= [—2 -1 2 } B = 3 1
4 3 1 -1 0
Answers
AB — [—15 7]
28 —13

EXAMPLE 6 MATRIX MULTIPLICATION

Given the matrices

A= B = C= =
1 -1 5 3 3 -1 =2 b 3
2 3 -2 2 1 0 4
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a. Show that AB # BA.

b. Determine the dimension of CD.

SOLUTION
a. AB=[(1)(S)+(-1)(22) ME3)+n2) | [ 7 =5 ]
2)5)+B3)2)  @2=3)+B)N2) | T | 4 0
A~ [OW+3)2) GED+3)3) | [ -1 14 ]
21+ 2)2) (2D +6) | T | 2 8|

Since the corresponding elements of AB and BA are not equal, AB # BA.

b. The product of a 2 x 3 matrix and a 3 X 1 matrix is a 2 X 1 matrix.

v Progress Check
If possible, find the dimension of CD and of CB, using the

matrices of Example 6.

Answers
2 x 1; not defined

We saw in Example 6 that AB # BA; that is, the commutative law does
not hold for matrix multiplication. However, the associative law A(BC) =
(AB)C does hold when the dimensions of A, B, and C permit us to find the

necessary products.

v’ Progress Check
Verify that A(BC) = (AB)C for the matrices A, B, and C of Example 6.

Matrices and Linear Systems

Matrix multiplication provides a convenient shorthand for writing a linear sys-

tem. For example, the linear system
2x— y—2z= 3
3x+2y+ z2=-1
x+ y—3z= 14



Exercise Set 8.2

1. For what values of a, b, ¢, and d are the
matrices A and B equal?
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can be expressed as

AX =B
where
2 -1 =2 X 3
A= 3 2 1 X=1y B=| -1
1 1 -3 b4 14

To verify this, form the matrix product AX and then apply the definition of

matrix equality to the matrix equation AX = B.

EXAMPLE 7 MATRICES AND LINEAR SYSTEMS
Write the linear system AX = B if

-2 3 x 16
S R R R
SOLUTION
Equating corresponding elements of the matrix equation AX = B yields
—-2x +3y= 16
x+4y=-3

2
0 3

|

In Exercises 3—18, if possible, compute the indicat-

3 4] ed matrix.
P B - 3. C+E 4. C—E
6 -2 | ¢ d] 5. 2A+ 3G 6. 3G — 4A
2. For what values of a, b, ¢, and d are the 7 A+ F 8 IB-D
matrices A and B equal? B B ’ '
a+bh 2¢ -1 6 9. AB 10. BA
A= y B=
a ¢~ | S 10 11. CB+D 12. EB-FA
Ir.1 Exercises 3-18, the following matrices are 13. DF + AB 14. AC + 2DC
given:
2 15. DA + EB 16. FG+ B
a=| %3 1] B=| 3 2 17. 2GE - 3A 18. AB + FG
-3 4 1 4 1
19. If
1 2 3 __3 2 -2 3 -1 3
C=[4 -1 2 D=| 4 1} A:[z —3] B:[z 0]
3 25 !
- -4 3
1 -3 2 _
13 €= [ 0 4]
E=| 3 2 4 F =
1 1 2 -2 4
= show that AB = AC.




20. If
1 2 2 -1
A=| 3 2 and B=|_3 4
show that AB # BA.
21. If
-2 3 3 6
A= 2 _3 and B = 2 4
show that 0 0
AB = [0 0}
22. If
o 1
A‘[l o}
show that Lo
A.A:{O 1]
23. If
1 0 0
I=]0 1 0| and
0 0 1
ayr dip a3
ayy  dy a3
A= |ay axn as

show that AI = A and IA = A.

24. Pesticides are sprayed on plants to eliminate
harmful insects. However, some of the pesti-
cide is absorbed by the plant, and the pesti-
cide is then absorbed by herbivores (plant-eat-
ing animals, such as cows) when they eat the
plants that have been sprayed. Suppose that
we have three pesticides and four plants, and
that the amounts of pesticide absorbed by the
different plants are given by the matrix

Plant 1 Plant 2Plant 3Plant 4
3 2 4 3

A=1]6 S 2 4
4 3 1 S

Pesticide 1
Pesticide 2
Pesticide 3

where a; denotes the amount of pesticide i in
milligrams that has been absorbed by plant ;.
Thus, plant 4 has absorbed 5 milligrams of
pesticide 3. Now suppose that we have three
herbivores and that the numbers of plants

eaten by these animals are given by the matrix
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Herbivore 1 Herbivore 2 Herbivore 3

18 30 20 Plant 1

B— 12 15 10 Plant 2
16 12 8 Plant 3

6 4 12 Plant 4

How much of pesticide 2 has been absorbed
by herbivore 3?

25. What does entry (2, 3) in the matrix product
AB of Exercise 24 represent?

In Exercises 26-29, find the matrices A, X, and B
so that the matrix equation AX = B is equivalent
to the given linear system.

26. 7x—2y= 6 27. 3x+4y=-3
—2x + 3y = -2 3x— y= 35
28. Sx+2y-3z= 4
2x — %y + z2=10
x+ y—5z2=-3
29°3x — y+4z= 5
2x + 2y + %z =-1
1 1
XxX—zy+t z= 3
In Exercises 30-33, write the linear system that is
represented by the matrix equation AX = B.

wac3 4] xf) o[

3.A=| 1 S x=|™ Bzm
4 3 xZ 2

1 7 2 x 37
32.A=| 3 6 1| x=|v B=[_3
| 4 2 0 z 2]
[ 4 5 2] x; 27
B.oa<| 0 3 4 XHB[
| 0 0 2 X3 4]

34. The m x n matrix all of whose elements are
zero is called the zero matrix and is denoted
by 0. Show that A + 0 = A for every m X n
matrix A.

35. The square matrix of order 7, such that a; =
1 and a; = 0 when i # j, is called the identity
matrix of order 7 and is denoted by I,



36.

37.
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(Note: The definition indicates that the diag-
onal elements are all equal to 1 and all ele-
ments off the diagonal are 0.) Show that AI,
= LA for every square matrix A of order 7.

The matrix B, each of whose entries is the
negative of the corresponding entry of
matrix A, is called the additive inverse of the
matrix A. Show that A + B = 0 where 0 is

the zero matrix. (See Exercise 34.)

A square black-and-white digital image with
9 pixels may be represented as a matrix, like
matrix A in Exercise 23. Suppose the image
has 4 bits per pixel. Each bit has a value of 0
or 1. Each entry in A must be an integer
between 0 (darkest black) to 2* — 1, or 15
(whitest white). (Note: The integers from 0 to
15 represent 16 possible values.)

0 4 6
Suppose A=15 0 1
7 2 3

The contrast is increased by multiplying each
entry by a scaling factor. Find the matrix 2A,
representing an image with increased contrast.

. The digital negative image of an image is

found by subtracting each element of the
image matrix from its maximum possible
value. The i,j entry of the matrix N for the
digital negative of A in Exercise 37 is

15 — a;

n.. = i

£l

Find the matrix N.

. We can add one image to another and repre-

sent the resulting image by the matrix sum of
the image matrix for each. Find the matrix
for the image that results from adding the
image represented by A to its negative N.
Describe the image qualitatively. What
would it look like?

8.3 Inverses of Matrices

If a # 0, then the linear equation ax = b can be solved by multiplying both

sides by the reciprocal of a. Thus, we obtain x = (%)b. It would be nice if we

could multiply both sides of the matrix equation AX = B by the “reciprocal of
A.” Unfortunately, a matrix has no reciprocal. However, we shall discuss a
notion that, for a square matrix, provides an analogue of the reciprocal of a

real number and will enable us to solve the linear system in a manner distinct

from the Gauss-Jordan Method discussed earlier in this chapter.

In this section we confine our attention to square matrices. The 7 X 7 matrix

1 0 0 --- 0]

01 0 --- 0
I, =

[ 000 -+ 1]

that has 1 for each entry on the main diagonal and 0 elsewhere is called the

identity matrix. Examples of identity matrices follow:
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100
12=[é ﬂ L=|0o 1 0 I, =
00 1

S O O =
SO = O
[ e N
- o O O

If A is any 7 X n matrix, we can show that

(See Exercise 35, Section 8.2.) Thus, I, is the matrix analogue of the real num-
ber 1.

An n x n matrix A is called invertible, or nonsingular, if we can find an n
X n matrix B such that

The matrix B is called an inverse of A.

EXAMPLE 1 VERIFYING INVERSES

Show that A and B are inverses of one another where

| 2 1 _ 2 -1
A—[3 2] and B—[_3 2]
SOLUTION
Since 1 0
-l

we conclude that A is an invertible matrix and that B is an inverse of A. (Verify

the above equation.) Note that if B is an inverse of A, then A is an inverse of B.

It can be shown that if an 7 x 7 matrix A has an inverse, it can have only

one inverse. We denote the inverse of A by Al. Thus, we have
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Note that the products AA~! and A™'A vyield the identity matrix I,, whereas the
products aa™! = a(%) and a7 'a = (%)a yield the identity element 1 for any real
number a # 0. For this reason, A~! may be thought of as the matrix analogue of

. 1
the reciprocal .

v Progress Check
Verify that the matrices

2] ol

are inverses of each other.

[NSY NI

If a # 0 is a real number, then a~' has the property that aa™! = a'a = 1. Since

! as the inverse, or reciprocal, of a. Although the

_ 1 _
a~! = —, we may refer to a
matrix A~! is the inverse of the # X # matrix A, since AA™! = A~'A = [, it can-

not be referred to as the reciprocal of A, since matrix division is not defined.

We now develop a practical method for finding the inverse of an invertible

matrix. Suppose we want to find the inverse of the matrix

1 3
A=s 3]
Let the inverse be denoted by
b )
B =
by by
Then we must have
AB = 12
(1)
and
BA = 12

Equation (1) now becomes

[ el Y]

bl + 3b3 b2 + 3b4 1 0
2[91 + 5b3 2b2 + 5b4 0 1

or
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Since two matrices are equal if, and only if, their corresponding entries are equal,

we have
by +3b; =1
2b, + 5by = 0 3)
and
b, +3b, =0
2b, + 5b, = 1 )

We solve the linear systems (3) and (4) by Gauss-Jordan Elimination. We begin
with the augmented matrices of the linear systems and perform a sequence of ele-

mentary row operations as follows:

(3) (4)

Write the augmented matrices of (3) 1 3 4 1] [1 3 ¢ 0]
and (4). 2 51 0 2 05 1
To make a,; = 0, replace row 2 1 3 11 [1 3 0 ]
with the sum of itself and —2 times | 0 -1 -2 1 | 0 -1 1 |
row 1.

Multiply row 2 by —1 to obtain 1 3 17 [1 3 01
ay) = 1. L 0 1 2 i L 0 1 -1 _
To make a;, = 0, replace row 1 1 0 =51 [1 o ¢ 3]
with the sum of itself and —3 times 0 1 | 2 0 1 i -
row 2. - o N

Thus, b; = —5 and b; = 2 is the solution of (3), and b, = 3 and b, = —1 is the
solution of (4). Check that
[ 3
B=1, 4

also satisfies the requirement BA = I, of Equation (2).

Observe that the linear systems (3) and (4) have the same coefficient
matrix (which is also the same as the original matrix A) and that an identical
sequence of elementary row operations was performed in the Gauss-Jordan
Elimination. This suggests that we can solve the systems at the same time. We

write the coefficient matrix A and next to it list the right-hand sides of (3) and

1 3110
2 05 1 01 (5)

(4) to obtain the matrix
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Note that the columns to the right of the dashed line in (5) form the identity
matrix L. Performing the same sequence of elementary row operations on

matrix (5) as we did on matrices (3) and (4) yields

1 0 §-5 3
0 1 i 241 (6)

Then A~ is the matrix to the right of the dashed line in (6).
The procedure outlined for the 2 x 2 matrix A applies in general. Thus,
we have the following method for finding the inverse of an invertible 7 x #

matrix A.

EXAMPLE 2 COMPUTING INVERSES

Find the inverse of

A:

_ N =
_ N
_ N W

SOLUTION

We form the 3 x 6 matrix [A | I5] and transform it by elementary row opera-
tions to the form [I; | A~']. The pivot element at each stage is shown in bold.

Write matrix A augmented by I. 1 2 3 i 1.0 0]
2 5 7 1 01 0
1 1 1 § 0 0 1

To make a,; = 0, replace row 2 with
the sum of itself and —2 times row 1.

(e
—_
—_
ll\>
—_
o

To make a3, = 0, replace row 3 with 0 -1 =2 10 1

the sum of itself and —1 times row 1. L ' i
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To make a;, = 0, replace row 1 with

the sum of itself and —2 times row 2. 10 1 52 0
T K B | 3 with 0 1 1 2 1 0
o make a3, = 0, replace row 3 wit 0 0 -1 L3011
the sum of itself and row 2. L -
Multiply row 3 by —1. 1 0 1 | 5§ -2 0]
0o 1 1 P2 1 0
0 0 1 3 -1 -1
To make a3 = 0, replace row 1 with 1 0 0 ! 2 -1 17

the sum of itself and —1 times row 3.

(e
—_
o
L,
[\
—_

To make a,; = 0, replace row 2 with o o0 1 i 3-1-1

the sum of itself and —1 times row 3.

The final matrix is of the form [I; { A™!] that is,

2 -1 1
Al=|-5 2 1
3 -1 -1

We now have a practical method for finding the inverse of an invertible
matrix, but we do not know whether a given square matrix has an inverse.
It can be shown that if the preceding procedure is carried out with the
matrix [A | I,] and we arrive at a point at which all possible candidates for
the next pivot element are zero, then the matrix is not invertible; and we

may stop our calculations.

EXAMPLE 3 COMPUTING INVERSES

Find the inverse of

1 2 6
A= 0 0 2
-3 -6 -9
SOLUTION - B
We begin with [A | I5]. 1 2 6 { 1 0 0
o o 2 { 0 1 0
-3 -6 -9 0 0 1
To make a3, = 0, replace row 3 by 1 2 6 i1 0 0|
the sum of itself and 3 times row 1. o 0 2 { 0 1 O
o o0 9 {+ 3 0 1

Note that a@,, = a3, = 0 in the last matrix. We cannot perform any ele-
mentary row operations upon rows 2 and 3 that will produce a nonzero pivot

element for a,,. We conclude that the matrix A does not have an inverse.
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v Progress Check
Show that the matrix A is not invertible.
1 2 -3
A=|3 2 1
5 6 -5

Solving Linear Systems

Consider a linear system of # equations in 7 unknowns.

a|1xy + a1xy + e+ a1,X, = bl
ar)1Xq + a))Xy + e+ ar,xX,, = bz

(7)
anx, +anx, +---+a,x,=b,

As has already been pointed out in Section 2 of this chapter, we can write the
linear system (7) in matrix form as

AX =B (8)
where
ap adp aiy, Xy by
a a a x b
A= 21 dxn Zfz X = 2 B = 2
anl anZ ann Xy bn

Suppose now that the coefficient matrix A is invertible so that we can compute
A~'. Multiplying both sides of (8) by A~!, we have

A (AX) = A'B
(A'TA)X = A"'B  Associative law
IX=A"B AA=I,
X=A'B I[X=X

Thus, we have the following result:
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# = Since matrix multiplication is not commutative, be careful to write the solution
to the system AX = Bas X = A™'B and not X = BA™\.

EXAMPLE 4 SOLVING A SYSTEM OF LINEAR EQUATIONS USING
INVERSES
Solve the linear system by finding the inverse of the coefficient matrix.
x+2y+3z=-3
2x + Sy +7z= 4
x+ y+ z= S5

SOLUTION
The coefficient matrix _
1 2 3
A=1[2 § 7
(11 1
is the matrix whose inverse was obtained in Example 2 as
[ 2 1
At=| -5 2 1
3 1 4
Since
-3
B=| 4
N

we obtain the solution of the given system as

2 -1 1][-3 -5
xoapo| S 2 1] 4| 28
3 -1 1| s ~18

Thus, x = =5,y = 28,z = —18.
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v’ Progress Check
Solve the linear system by finding the inverse of the coefficient
matrix.
x—2y+ z= 1
x+ 3y + 2z = 2
—x + z=-11
Answers

x=7,y=1,z=—4

The inverse of the coefficient matrix is especially useful when we need to

solve a number of linear systems
AX=B,AX=B,,...,AX =B,

where the coefficient matrix is the same, and the right-hand side changes.

EXAMPLE 5 SOLVING A SYSTEM OF LINEAR EQUATIONS USING
INVERSES

A steel producer makes two types of steel, regular and special. A ton of regular
steel requires 2 hours in the open-hearth furnace and 5 hours in the soaking pit; a
ton of special steel requires 2 hours in the open-hearth furnace and 3 hours in the

soaking pit. How many tons of each type of steel can be manufactured daily if

a. the open-hearth furnace is available 8 hours per day and the soaking pit is

available 15 hours per day?
b. the open-hearth furnace is available 9 hours per day and the soaking pit is

available 15 hours per day?

SOLUTION
Let

x = the number of tons of regular steel to be made

y = the number of tons of special steel to be made
Then the total amount of time required in the open-hearth furnace is
2x + 2y
Similarly, the total amount of time required in the soaking pit is

Sx + 3y
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If we let b; and b, denote the number of hours that the open-hearth furnace and

the soaking pit are available per day, respectively, then we have

2x + 2y = b,
Sx +3y=b,
or
BN
5 3|y b,
Then

HEHERHA

Verify that the inverse of the coefficient matrix is
3

2 211 =4 1/2
{5 3} T e A
a. If by = 8 and b, = 15, then

x B _::/4 1/2 8 B 3/2
y - /4 - /2 15 - 5/2
3
That is, 5 tons of regular steel and % tons of special steel can be manufac-

tured daily.
b. If by = 9 and b, = 15, then

x| =3, ', 91 _ [ 3,
v N 5/4 _]/2 15 N 15/4

.3 15 .
That is, ; tons of regular steel and - tons of special steel can be manu-
factured daily.
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Focus on Coded Messages

Cryptography is the study of methods for encoding and decoding messages.

A'BCDETFSG One of the very simplest techniques for doing this involves the use of the
Lottt inverse of a matrix.

2384567 Suppose that Leslie and Ronnie are drug enforcement agents in the New York
H I J KL MN City police department and that Leslie has infiltrated a major drug operation. To
U avoid detection, the agents communicate with each other by using coded mes-
8 9 10 11 12 13 14 gages. First, they agree to attach a different number to every letter of the alpha-
OPQRST bet. For example, they let A be 1, B be 2, and so on, as shown in the accompa-
1111t nying table. Suppose that on Thursday, Ronnie wants to send Leslie the message
15 16 17 18 19 20 STRIKE MONDAY
U W Y Z to indicate that the police will raid the drug operation on the following
R Monday. Substituting for each letter, Ronnie sends the message
21 22 23 24 25 26

19, 20, 18, 9, 11, §, 13, 15, 14, 4, 1, 25 (1)

Unfortunately, this simple code can be easily cracked by analyzing the fre-
quency of letters in the English alphabet. A much better method involves the use
of matrices.

First, Ronnie breaks the message (1) into four 3 x 1 matrices

19 9 13 4
x,=|2| x=[11] x=|15] x=]|1
18 N 14 25
Sometime ago, Ronnie and Leslie had jointly selected an invertible 3 x 3 matrix such as
1 1 2
A=1]1 1 1
1 0 1
which no one else knows. Ronnie now forms the 3 x 1 matrices
75 30 56 55
AX] = 57 AXZ = 25 AX3 = 42 AX4 = 30
37 14 27 29
and sends the message
75,57, 37, 30, 25, 14, 56,42, 27, 55, 30, 29 (2)
To decode the message, Leslie uses the inverse of matrix A,
-1 1 1
Al = 0 1 -1
and forms - 0
75 30 56 55
A_l 57 = Xl 14_1 25 = Xz A_l 42 = X3 A_l 30 = X4
37 14 27 29

which, of course, is the original message (1) and which can be understood by using the accompanying table.
If Leslie responds with the message

33, 21, 16, 52, 39, 14, 66, 47, 28, 52, 38, 23
what is Ronnie being told?
D
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Exercise Set 8.3

In Exercises 1-4, determine whether the matrix B

is the inverse of the matrix A.

2
4
1

2 Y 1 -1

1. A= 2 |B=

ERLE
(3 -1 I

2. A= > > } B=| 1 g }
- | 2 4

[ 1 2 2] [ 3

3. A=| -1 3 0| B=| 1

| 0 2 1 ] | 2

1 0 27 1

4. A= 2 1 3| B=| =2

-4 1 2 0

In Exercises 5-10, find the inverse of the given
matrix.

s |1 6.2 o
| 2 4 4 -
(11 C 2 1

7 8.

-2 1 } 1 1

- 1 1

o. [ 1 2 Sl 1 1
-1 3 4 1 0

o S5 -4 1 2

In Exercises 11-18, find the in

1. | 1 3 12.] 6 -4
-1 4 5 g
11 3 s 7

13. 2 -8 -4 14. s _3
-1 2 0 4 4
- -1 0

15. (2) (3’ } 16.| o 4
i B 0 0

1 0 -1 -1 0

17.] 21 O0f 18| 0 1

0o 1 1 -1 0
- 20

In Exercises 19-24, solve the given linear system

verse, if possible.

by finding the inverse of the coefficient matrix.

19. 2x +
x—3y=6

y=35

20. 2x — 3y =
3x+ y=-13

-5

1
-1

—_ o OO

21. 3x+ y—z =
x — 2y = 8
3y+z= -8

2 22.3x+y— z= 10
2x —y+ z=-1
—x+y—-2z= 3§
23. 2x —y+ 3z =

3x—y+ z=

—11 24. 2x + 3y —2z=13
=5 4x+2y+ 2= 3

x+y+ z= -1 y— z= 35

In Exercises 25-34, solve the linear systems in
Exercises 21-30, Exercise Set 8.1, by finding the
inverse of the coefficient matrix.

35. Solve the linear systems AX = B; and AX =
B,, given
3 2 4
Al = 2 -1 0
0 4 1
1 4
B,=|-1| B =] 3
S -2
36. Solve the linear systems AX = B; and AX =
B,, given
1 0 -1
Al = 1 2 0
-1 -1 3
2 4
B1 = _3 BZ = _3
2 =5
37. Show that the matrix

is not invertible.

38.

A trustee decides to invest $500,000 in two
mortgages, which yield 4% and 8% per
year, respectively. How should the $500,000
be invested in the two mortgages if the total
annual interest is to be

a. $30,000>  b. $40,000?  c. $50,000?

(Hint: Some of these investment objectives
cannot be attained.)

. Many graphing calculators can find the
inverse of a matrix, just by entering the
name of the matrix you have stored and then
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hitting the inverse key. The display looks like 40. Now use the inverse you found in Exercise
this: 39 to solve the system, verifying the solution
given at the end of the example.

41. Mathematics in Writing: Explain in your
own words how the inverse of a matrix is
used to solve a system of equations. How is
this process similar to the method for solving
a linear equation in one unknown, discussed
in Section 2.1? How is it different?

Use this method to find the inverse of the
coefficient matrix for the system of equations
in Example 5 in Section 8.1.

8.4 Determinants

In this section, we will define a determinant and develop manipulative skills for
evaluating determinants. We will then show that determinants have important
applications and can be used to solve linear systems.

Associated with every square matrix A is a number called the determinant
of A, denoted by |A‘ If Ais1x 1, thatis, if A = [a,4], then we define |A| =
ayy. If A is the 2 X 2 matrix

the | Al is said to be a determinant of second order and is defined by the rule

_ |a ap| _
|A| = "1 12 = ayay, — anag

a1 dx

EXAMPLE 1 DETERMINANT OF SECOND ORDER
Compute the real number represented by
4 -5
3 -1

SOLUTION

We apply the rule for a determinant of second order.

=@ -0)(=5 =11

4 -5
3 -1
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v’ Progress Check

Compute the real number represented by

11
a. -6 2 b. 2 4
-1 -2 -4 -2
Answers
a. 14 b. 0

Minors and Cofactors

Consider the 3 x 3 matrix
ap dip dg3
A=|ay ay ay
daz1 dz; ds3

The minor of an element g, is the determinant of the matrix remaining after

deleting the row and column in which the element a; appears. Given the matrix

4 0 -2
1 -6 7
-3 2 5

4_0— _‘ 4 0‘
-3 2

The cofactor of the element g; is the minor of the element g; multiplied by
(—1)*7. Since (—1)*/is +1 if i + jis even and —1 if i + j is odd, we see that the
cofactor is the minor with a sign attached. The cofactor attaches the sign to the
minor according to this pattern:

+

+

S
|+ 1+
o+

EXAMPLE 2 DETERMINING COFACTORS

Find the cofactor of each element in the first row of the matrix.

-2 0 12
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SOLUTION
The cofactors are
(—1)+! 53] = ‘ o3 ‘ = —30-24=-54
8 6 8 -6
(—1)1+2 | -4 3| = —‘—4 3 ‘ = —(24-21)= -3
7 -6 7 =6
(-1 | 4 S E‘ = ‘4 5’2—32—352—67
7 8 7 8
v Progress Check

Find the cofactor of each entry in the second column of the matrix.
16 -9 3
-5 2 0
3 4 -1
Answers
cofactor of —9 is —5; cofactor of 2 is —7; cofactor of 4 is —15

The cofactor is the key to the process of evaluating determinants of any order.

Consider the matrix

=3 3]

and choose the second column. The cofactor of

a, = =5 s (—1)1+2[ 3' j ] = -3
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and the cofactor of

4y =—1 s (—1)2+2[4 —ﬂ:4

Therefore
Al = (=5)(=3)+ (-1)(@) =15-4 =11

Note that the above is an alternative method for Example 1. In fact, verify the
formula given for a determinant of order 2 at the beginning of this section using
the method of expansion by cofactors, using any row or any column.

Let us illustrate the process for a 3 x 3 matrix.

EXAMPLE 3 EXPANSION BY COFACTORS

Evaluate the determinant of the matrix

-2 7 2
6 -6 0
4 10 -3

using the method of expansion by cofactors.

SOLUTION

Expansion by Cofactors

Step 1. Choose a row or column about which to Step 1. We expand about column 3.

expand. (In general, a row or column con-
taining zeros simplifies the work.)

Step 2. Expand about the cofactors of the chosen Step 2. The expansion about column 3 is
row or column by multiplying each entry of sl6 -6
the row or column by its cofactor. Repeat (2)(=1) 4 10
the procedure until all determinants are of
order 2. H(0)(—1)2+3 -2 7
0)(=1) 4 10
-2 7
+(=3)(—1)**3
(=3)(=1) 6 -6
Step 3. Evaluate the cofactors and form the sum Step 3. Using the rule for evaluating a determinant

indicated in Step 2.

of order 2, we have
2)(1)[(6)(10) — (4)(=6)] + 0
F(=3)(D)[(=2)(=6) = (6)(7)]
= 2(60 + 24) — 3(12 — 42)

= 258
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Observe that it was unnecessary for us to calculate the cofactor corresponding
to the 0 element in column 3. We only did it here to reinforce the method of find-
ing cofactors.

Note that expansion by cofactors of any row or any column produces the
same result. This property of determinants can be used to simplify the arith-
metic. The best choice of a row or column about which to expand is generally
the one that has the most zero entries. If an entry is zero, the entry times its

cofactor is also zero, so we do not have to evaluate that cofactor.

v’ Progress Check
Find the determinant of the matrix in Example 3 by expanding

about the second row.

Answer
258

EXAMPLE 4 EXPANSION BY COFACTORS

Verify the rule for evaluating the determinant of the matrix of order 3.

ayp dp a3

@y G 3| = andndyy — dndndyy — d1dndsy T andydyy T aands —
a3 dx  ds3 13031922
SOLUTION

Expanding about the first row, we have

dy; Ay
as;  dz

ayr a3
as31  4as3

dayy a3

12
sy dss

= a11(axas; — a3dys) — arp(ards; — azass)
+ a13(a1a3 — a3ax)

= a11ad33 — A11d3d23 — d12d21d33 T A12d31d)3
t a13021a3, — 41393192

(Verify this answer using any other column or row.)
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v’ Progress Check

Show that the determinant of the matrix is equal to zero.

a b ¢
a b ¢
d e f

The process of expanding by cofactors works for determinants of any order.
If we apply the method to a determinant of order 4, we produce determinants of

order 3; applying the method again results in determinants of order 2.

EXAMPLE 5 EXPANSION BY COFACTORS

Evaluate the determinant of the matrix.

-3 5 0 -1
1 2 3 3
0 4 -6 0
0 -2 1 2

SOLUTION

Expanding about the cofactors of the first column, we have

-3 5 0 -1 2 3 -3 5 0 -1
23 31_ 50 4 6 ol 1| 4 -6 0
0 4 -6 0 2 1 2 2 1 2

0 =2 1 2

=3[(=4)(9) — 6(=2)] = 1[(=1)(—8) + 2(=30)]
= —3[-36 + 12] — 1[8 — 60]
= —3(-24) — 1(—52) = 124
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v’ Progress Check

Evaluate the determinant of the matrix.

0-1 0 2
3 0 4 O
0O S 0 -3
1 01 0
Answers
7

Exercise Set 8.4

In Exercises 1-6, evaluate the determinant of the In Exercises 11-20, evaluate the determinant of

. . the given matrix.
given matrix.

2 -3 3 4 4 2 S 4 1 2
Lta 5 2001 2 m. s 2 o 1220 2 3
2 0 4 0 0 -4
-4 1 2 2
3.1 0 2 4. ] 3 3
-1 2 0 -1 3 2
s |0 0 6 |74 -1 13.] 3 4 1 4. {0 7 7
b3 -2 3 6 5 2 2 1 3
In Exercises 7-10, let
3 - 2 0 -1 0 3
A=| 4 1 -3 o 1 2 1
s 0 -0 .02 2 2 3
3 3 1 0
7. Compute the minor of each of the following
elements:
0 o0 2 3
a. dqq b a3 C. a3 d. asz 1 1 22 3
8. Compute the minor of each of the following 16. 0 2 2 1
31 3 0
elements:
a.dq) b. [25%) C. dy3 d aszy
9. Compute the cofactor of each of the follow- 21 3 1
ing elements: 17. % _(1) ; _g
a. dy b. a,; C. ds d.as o -1 1 3
10. Compute the cofactor of each of the follow-
ing elements: 2 2 1 0
a.dq) b 253 C. dy3 d aszy 18. _§ g _; _:j{
1 -5 2 3
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19.

20.

WU OO

-2

1

W == O

-2
=5

— W

N A= O

21. Finding the determinants by using your
graphing calculator’s MATRIX menu, inves-
tigate what happens to the determinant of
the matrix in Exercise 17 if you change the
matrix in the following ways:

S WrRk K

a. Interchange row 2 and row 3.

b. Interchange row 2 and row 3, then the
new row 3 and row 4.

WA O

What can you conclude from these results?

8.5 Properties of Determinants

In general, the computations required to evaluate the determinant of a matrix can
get rather time-consuming as the dimension of the matrix becomes quite large.
Therefore, it may be worthwhile to consider alternative methods that may reduce
the number of operations involved. We have already observed that if an element
of a matrix equals zero, then we need not evaluate the corresponding cofactor
since the product of the two is also zero. Thus, we will examine methods to enable
us to obtain more zero entries in a matrix whose determinant is equal to that of
the original matrix under consideration.

In Section 8.1, we presented the elementary row operations:
1. Interchange any two rows.
2. Multiply each element of any row by a constant k # 0.

3. Replace each element of a given row by the sum of itself plus k times the
corresponding element of any other row.

We have observed that these operations are important in transforming one
matrix into another matrix. We wish to explore what effect these operations
have on the determinant of the original matrix compared with the determinant
of the transformed matrix. We also wish to examine the determinant of some

special matrices:
1. a matrix with a row of zeros
2. a matrix where two rows are identical

3. a matrix where the rows and columns are interchanged, called the trans-
pose of the original matrix
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Let
5 0 -1
A= 4 -6 0
-2 1 2

Expanding about the cofactors of the first row, we find that
|A| = -52

Interchanging rows 1 and 2 of A, we have

4 -6 0
) 0 -1|=52
2 1 2

Multiplying the second row of A by %, we obtain

5 0 -1
2 =3 0| =-26
-2 1 2

Adding 2 times row 1 to row 3, we find that

5 0 -1
4 -6 0|=-52
8 1 0

If we replace the second row of A with 0 elements, we have

5 0 -1
0 0 0]|=o
2 1 2

If we replace row 3 of A with row 2, we obtain

5 0 -1
4 -6 0|=9
4 -6 0

Taking the transpose of A, where we interchange the rows and columns of A,

or equivalently, replacing a; with a; we find that

5 4 =2
0 -6 11 =-52
-1 0 2

(Verify the calculations of the previous determinants, expanding by any row or
any column.) These examples suggest the properties of determinants shown in
Table 2.

Note that the determinant of a matrix expanded by cofactors yields the
same answer, whether the expansion uses a particular row or a particular col-
umn. This fact allows us to replace the word “row” by the word “column” and
obtain the same property. If a row or column has all zero entries, then expan-

sion by cofactors about this zero row or column produces a determinant of 0.
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If two rows or two columns are identical, then we may add —1 times one to the

other to produce a row or column of zeros, respectively.

TABLE 2 Properties of Determinants
D

1. Interchange any two rows of A or interchange any two columns of A, and call
the new matrix B. Then

|B| = —|Al

2. Multiply each element of any row of A or any column of A by a constant &,
and call the new matrix B. Then

Bl = k|Al

3. Add k times one row to any other row or k times one column to any other col-
umn and call the new matrix B. Then

Bl = [A]

4. If A has a row or column with 0 elements or if A has two identical rows or two
identical columns then

Al =0

5. Take the transpose of A, where we replace a;; with g, so that the rows become

columns and the columns become rows. If we call the new matrix B, then
|B| = [A]
D

EXAMPLE 1 USING PROPERTIES OF DETERMINANTS

Evaluate the determinant.

0 2 3 0
4 1 8 15
1 -1 2 0
-1 -2 -3 -6 0 2 3 0
0o 5 0 15
SOLUTION .
To make a,; = 0, replace row 2 by the sum of o
itself and (—4) times row 3. To make a4 = 0,
replace row 4 by the sum of itself and row 3.
2 3 0
‘ S 0 15
3 -1 -6

Now expand the determinant by the cofactors of

the first column, obtaining
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We factor out 5 from the second row to obtain 2 3 0
51 1 0 3
-3 -1 -6
To make a,; = 0, replace column 3 by the sum 2 3 -6
. . S 1 0 0
of itself and (—3) times column 1.
-3 -1 3
Expand this determinant by the cofactors of the 3 _g
second row, obtaining =5 ]—1 3 ’
Evaluating this last 2 x 2 determinant, we have —-5(9 —-6) =—15
v’ Progress Check
Evaluate the determinant.
4 0 0 3
2 4 5 8
-2 1 0 2
-4 -1 -2 -3
Answer
-10
i 2-3 2 4 11 0 1
Exercise Set 8.5 o s | o 44
In Exercises 1-6, evaluate the determinant of the ’ 01 2 0 -2 3 1 -4
given matrix. 01 3 -1 02 0 2
2 2 4 0 1 3
L 3 g 112 5 s 1 7. Show that
1 1 2 4 2 22 aj+by a+by | _ay a N b, b,
c d c d c d
32 1 0 8. Prove that if a row or column of a square
3 -1-3 -1 0 matrix consists entirely of zeros, the determi-
’ 00 2 2 . )
41 3 3 nant of the matrix is zero. (Hint: Expand by
cofactors.)
-1 2 4 0
3.2 -3 0 9. Prove that if matrix B is obtained by multi-
4. 04 2 § plying each element of a row of a square
0-3 1 4 matrix A by a constant k, then |B| =k |A | .
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10. Show that

ka”

azy

ka, _

a

an
kaz]

12. Prove that if matrix B is obtained from a
square matrix A by interchanging the rows

ap
and columns of A, then IB] = |A].

kazz

app an

dy; dx

11. Prove that if A is an # X n matrix and B = kA,
where k is a constant, then IB| = k*|A].

8.6 Cramer’s Rule

Determinants provide a convenient way of expressing formulas in many areas
of mathematics, particularly in geometry. One of the better known uses of
determinants is for solving systems of linear equations, a procedure known as
Cramer’s Rule.

In an earlier section, we solved systems of linear equations by the method
of elimination. We now apply this method to the general system of two equa-

tions in two unknowns.

anx +apy = by (1)
a,x + azy = bz (2)

Let us multiply Equation (1) by a,,, Equation (2) by —a;, and add. This elimi-

nates y.
a11aX + apayy = biay
—ay1a10X — a1y = —bya,
ayapx — ayapx = biayy — byay,
Thus,
x(anay — ayap) = biay, — byayy
or

b,ay, — bya
x = 0192 2d12

a11dx — dndin
Similarly, multiplying Equation (1) by a,,, Equation (2) by —a,, and adding, we
can eliminate x and solve for y.
_ by — biay,

aydyy — axdyn
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The denominators in the expression for x and y are identical and can be writ-
ten as the determinant of the matrix

ap  dn

lA| =

a1 Ay

If we apply this same idea to the numerators, we have

21 ap ayy 21

2 dxp axy 2

x = , Y= s |A| #0
A A

This formula is called Cramer’s Rule and is a means of expressing the solution
of a system of linear equations in determinant form. Let A; denote the matrix
obtained by replacing the first column of A with the column of the right-hand
sides of the equations. Furthermore, let A, denote the matrix obtained by

replacing the second column of A again with the column of the right-hand sides.

We may summarize Cramer’s Rule as follows:

The following example outlines the steps for using Cramer’s Rule.
EXAMPLE 1 CRAMER’S RULE
Solve by Cramer’s Rule.
3x— y= 9
x+2y=-4
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SOLUTION

Cramer’s Rule

Step 1. Compute |Al, the determinant of the coef- Step 1.
ficient matrix A. If A = 0, Cramer’s Rule
cannot be used. Use Gaussian Elimination

or Gauss-Jordan Elimination.

Step 2. Compute |A, |, the determinant of the Step 2.
matrix obtained from A by replacing the
column of coefficients of x, the first column x = |-I =
unknown, with the column of right-hand

sides of the equations. 18— 4 14

_ | / /

x == —_—

Al Step 3.

Step 3. Compute |A, |, the determinant of the
matrix obtained from A by replacing the

column of coefficients of y, the second col-

umn unknown, with the column of right- = = =-3

hand sides of the equations.

_ 4

Tal

Thus, x = 2,y = =3.
y

v’ Progress Check
Solve by Cramer’s Rule.
2x + 3y = —4
3x +4y = =7
Answers
x=-5y=2

The steps outlined in Example 1 can be applied to solve any system of lin-
ear equations in which the number of equations is the same as the number of
unknowns and in which |A| # 0. For example, assume A is 3 x 3. If A; is the
matrix obtained by replacing the third column of A with the column of right-
hand sides, then we have
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EXAMPLE 2 CRAMER’S RULE

Solve by Cramer’s Rule.

3x + 2z = -2
2x —  y = 0
2y + 6z = —1
SOLUTION
We compute the determinant of the matrix of coefficients.
3 0 2
lal =12 -1 0| =-10
0 2 6
Then
-2 0 2
0 -1 0
Al |A] -10
3 =2 2
2 0 0
A, 0 -1 6 20
= 2l = — _2
¥~ T4l [A] 10
3 0 =2
2 -1 0
Al [A] -10 2
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v Progress Check

Solve by Cramer’s Rule.

3x - z= 1
—6x +2y =-5
—4y+3z= 5
Answers
2 1
= = = T =1
X 3 y 5 Z
WARNING

AN

L ]

a. Each equation of the linear system must be written in the form
ax +by+cz=k

before using Cramer’s Rule.

b. If |A| = 0, Cramer’s Rule cannot be used.

Exercise Set 8.6

5.-x— y+2z= 7
x+2y—2z=-7
2x — y+ z=—4

In Exercises 1-8, solve the given linear system by
using Cramer’s Rule.

1. 2x+ y+ z=-1
2x — y+2Z: 2 6. 4x + Y= Z:_l
x+2y+ z=-4 x— y+t2z= 3
—x+2y— z= 0

2. x—y+ z=-§

3x+y+2¢=-5 7. x+ y— z+2w= 0

x—y— z=-2 2x +  y - w=-2

3x + 2z -3

3.2x+ y— z= 9 —x + 2y +3w= 1
x—2y+2z=-3

3x+ 3y +4z= 11 8. 2x+ y —dw=-7

3x +2z4+ w=-1

4 2x+ y- z=72 —-x+ 2y +3w= 0

—2x —2y+3z= 2

—2x—3y+2z— w= 8§
3x+ y— z=—-4
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9. Mathematics in Writing: Give a step-by-step 10. Redo Exercises 7 and 8 using the method
method for solving systems of equations by you outlined in Exercise 9.
Cramer’s Rule with your graphing calculator.

EEN
Terms and Symbols
Al 523 dimension 499 matrix multiplication 513
Al 531 elementary row operations 502 matrix subtraction 513
[a;] 500 elements of a matrix 499 minor 532
additive inverse 519 entries of a matrix 499 nonsingular matrix 520
augmented matrix 501 equality of matrices 510 order 499
coefficient matrix 501 expansion by cofactors 533 pivot element 503
cofactor 532 Gaussian Elimination 503 pivot row 503
column matrix 500 Gauss-Jordan Elimination 506 row matrix 500
Cramer’s Rule for three 545 identity matrix 519 scalar 512
unknowns inverse 520 scalar multiplication 512
Cramer’s Rule for two invertible matrix 520 square matrix of order 7 499
unknowns 543 matrix 499 transpose of a matrix 538
determinant 531 matrix addition 511 zero matrix 518
Key Ideas for Review
Topic Page Key Idea
Matrices 499 A matrix is a rectangular array of numbers.
Addition and Subtraction 511 The sum and difference of two matrices A and B can be formed
only if A and B are of the same dimension.
Multiplication 514 The product AB can be formed only if the number of columns of A
is the same as the number of rows of B.
Systems of Linear Equations and 516 A linear system can be written in the form AX = B, where A is
the coefficient
Matrix Notation matrix, X is a column matrix of the unknowns and B is the column

matrix of the right-hand sides. The elementary row operations are
an abstraction of those operations that produce equivalent systems
of equations.

Gaussian and Gauss-Jordan 506 Gaussian Elimination and Gauss-Jordan Elimination both involve
the use of
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Key Ideas for Review

Topic

Elimination

Inverse of a Matrix

Solving Linear Systems

Determinants

Evaluation by Cofactors

Properties

Page

519

525
531

532

538

Key Idea

elementary row operations on the augmented matrix corresponding
to a linear system. In the case of a system of three equations with
three unknowns and a unique solution, the final matrices are of this

form:
S B 1 0 0 ¢
o * * i * 0 1 0 ¢
o 0 * { * 0 0 1 3
Gaussian Elimination Gauss-Jordan Elimination

If Gaussian Elimination is used, back-substitution is then performed
with the final matrix to obtain the solution. If Gauss-Jordan
Elimination is used, the solution can be read from the final matrix.

The 7 x n matrix B is said to be the inverse of the 7 X # matrix A if
AB = I, and BA = I,. We denote the inverse of A by A~!. The
inverse can be computed by using elementary row operations to
transform the matrix [A | L] to the form [I, | B], in which case [B
=A1.

If the linear system AX = B has a unique solution, then X = A~'B.

Associated with every square matrix is a number called a determi-
nant. The determinant of the 1 X 1 matrix A = [a] is |A| = a. The
rule for evaluating a determinant of order 2 is

4 Z =ad — bc

For determinants of order greater than 2, the method of expansion
by cofactors may be used to reduce the problem to that of evaluat-
ing determinants of order 2. When expanding by cofactors, choos-
ing the row or column that contains the most zeros usually simpli-
fies the arithmetic.

Some useful properties of determinants follow:

1. Interchange any two rows of A or interchange any two columns
of A, and call the new matrix B. Then

|B| = -1Al
2. Multiply each element of any row of A or any column of A by a
constant k, and call the new matrix B. Then
18] = klal
3. Add k times one row to any other row or k times one column to

any other column and call the new matrix B. Then
|B| = Al
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Topic Page Key Idea

4. If A has a row or column with 0 elements or if A has two identi-
cal rows or two identical columns then

Al =0

5. Take the transpose of A, where we replace a; with a;;, so that the
rows become columns and the columns become rows. If we call
the new matrix B, then

|B| = |A|

Cramer’s Rule 543 Cramer’s Rule provides a means for solving a linear system by

expressing the value of each unknown as a quotient of determinants.
Review Exercises

Solutions to exercises whose numbers are in bold D 4 5 i 0
are in the Solutions section in the back of the g, 6-9 4 | 0
book. 3 21 ¢ 0
Exercises 1-4 refer to the matrix
1 4 2 0 8 In Exercises 9-12, use back-substitution to solve
A= 2 0 -3 -1 § the linear system corresponding to the given aug-
4-6 9 12 mented matrix.
1. Determine the dimension of the matrix A. 1 -
2. Find a,,. 9. [ 0 1 4 ]
3. Flnd asq.
4. Flnd aqs. ]. 2 é 21/2
Exercises 5 and 6 refer to the linear system. 10 0 14§ 5
3x =7y =14
xtdy= 6 - 1-4 2 {18 -
5. Write the coefficient matrix of the linear sys- 11. 0 121} 5
tem. 0 0 1 g _1
6. Write the augmented matrix of the linear - -
system.
In Exercises 7 and 8, write a linegr system corre- - 1 -2 2 -9 -
sponding to the augmented matrix. 1. 0 1 3 | -8
0 0 1 -3

4 -1 3 - -
7'[2 5 | 0]
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Review Exercises

In Exercises 13-16, use matrix methods to solve

the given linear system.

13.

14.

15.

16.

In Exercises 17 and 18, solve for x.

)

17.

x+ y= 2

2x — 4y = =5

3x— y=-17

2x + 3y = —4
x+3y+2z= 0
—2x +3z=-12

2x —6y— 2= 6

2x— y—2z2=3
—2x+3y+ z=3
2y — z2=6

5 1] . [5 -1
3 2|73 -6

6 x? 6 9
L [4x —2]:[—12 -2

Exercises 19-28 refer to the following matrices:

C =

2 -
A:[3 2] B=

-1 0 r
0 4| D=
2 2

If possible, find the following:

19. A+ B

21.
23.
25.
27.

A+C
CD
BC
A+ 2B

]

[-1
| 4

1

-1

20.
22.
24.
26.
28.

S

-3
3 4
0 -6

B—-A
SD
DC
CB

In Exercises 29 and 30, find the inverse of the
given matrix.

1 1 4

2 3
29.[1 4} 0.0 -5 2 o
4 2 -1

In Exercises 31 and 32, solve the given system by
finding the inverse of the coefficient matrix.
31. 2x —y =1 32, x+2y—2z=-4
x+ty=3$§ 3x — vy =-2
y+4z=-1
In Exercises 33-38, evaluate the determinant of
the given matrix.

301 12
3302 5 34. ‘o 6‘
1 0 -
35. | ¢ :%’ 6.2 3 =5
0 4 0
1 -1 2 1 2 4
3.1 0 5 4] 38| 0 3 4
2 3 8 0 0 -1

In Exercises 39-44, use Cramer’s Rule to solve
the given linear system.

39. 2x— y=-3 40. 3x— y= 7
—2x + 3y = 11 2x + 5y = —18
41. x+2y= 2 42. 2x+3y— z=-3

2x — 7y = 48 —3x +4z = 16
2y +5z= 9
43. 3x + 2= 0 44. 2x+3y+ z=-5

x+ y+ 2= 0
—3y+2z=—-4

2y +2z= -3
4x+ y—2z=-2
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Exercises 1 and 2 refer to the matrix

1 2
A=| -2 4
0o 7

1. Find the dimension of the matrix A.

2. Find as,.
3. Write the augmented matrix of the linear
system
—7x +6z= 3
2y — z2=10

x— y+ 2= 3§

4. Write a linear system corresponding to the
augmented matrix

-5 2 i 4

3-4 | 4
5. Use back-substitution to solve the linear sys-
tem corresponding to the augmented matrix

1 1 i 0
o1 )
6. Solve the linear system
—x+2y= 2
x+2y=-7

by applying Gaussian Elimination to the
augmented matrix.

7. Solve the linear system
2x — y+3z=2
x+2y— z=1
—x+ y+t4z=2

by applying Gauss-Jordan Elimination to the
augmented matrix.

8. Solve for x.

= Sl S

Exercises 9—12 refer to the matrices

If possible, find the following:
9. C-2D 10. AC
11. CB 12. BA

13. Find the inverse of the matrix

-1 0 4
2 1 -1
1 3 2

14. Solve the given linear system by finding the
inverse of the coefficient matrix.

3x — 2y =—8
2x + 3y = —1

In Exercises 15 and 16, evaluate the determinant
of the given matrix.

0 -1 2
15. “26 ‘ﬂ 16. | 2 2 3
1 4 5

17. Use Cramer’s Rule to solve the linear system

x+2y=-2
—2x—3y=1
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Writing Exercises

1. Discuss how to solve a linear system in three 3.

unknowns if Cramer’s Rule fails to hold.

2. Compare and contrast the additive proper-

ties of matrices with the additive properties 4.

of the real numbers.

Chapter 8 Project

Compare and contrast the multiplicative
properties of square matrices with the multi-
plicative properties of the real numbers.

Compare and contrast Gauss-Jordan
Elimination and Gaussian Elimination.

Manipulating images using computer technology is a major component of special effects in some of

today’s most popular films. The mathematics of matrices can help us see how images can be altered by

increasing the contrast or adding two images together. One interesting use of the latter technique is a

process called blue-screen chromakey, by which a character may appear to be in an environment which

was actually photographed separately.

For this project, do the following exercises from this chapter: Section 8.1, 51, and Section 8.2,

37-39.

Now make up your own image matrix. Make it 20 pixels by 15 pixels, and let each pixel have
6 bits (this means each entry will be an integer between 0 and 63). Repeat the exercises using this
matrix. Use your calculator to help you. If increasing the contrast results in an entry greater than

63, what should you do?





